精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)证明当时,关于的不等式恒成立;

(Ⅲ)若正实数满足,证明.

【答案】(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析

【解析】试题分析:(1)求导函数,从而可确定函数的单调性;(2)构造函数,利用导数研究其最值,将恒成立问题进行转化;(3)将代数式放缩,构造关于的一元二次不等式,解不等式即可.

试题解析:(Ⅰ)

,得

,所以.

所以的单调减区间为,函数的增区间是.

(Ⅱ)令

所以 .

因为

所以.

,得.

所以当

时,.

因此函数是增函数,在是减函数.

故函数的最大值为

.

,因为

又因为是减函数.

所以当时,

即对于任意正数总有.

所以关于的不等式恒成立.

(Ⅲ)由

从而 .

,则由得,.

可知,在区间上单调递减,在区间上单调递增.

所以

所以

因此成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】,又是一个常数,已知时, 只有一个实根,当时, 有三个相异实根,给出下列命题:

有一个相同的实根;

有一个相同的实根;

的任一实根大于的任一实根;

的任一实根小于的任一实根.

其中正确命题的个数为( )

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+bx2+cx的导函数图象关于直线x=2对称
(1)求b值;
(2)若f(x)在x=t处取得极小值,记此极小值为g(t),求g(t)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:
(1)求a2 , a3
(2)猜想{an}通项公式并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在其定义域内有两个不同的极值点.

(1)求的取值范围.

(2)设的两个极值点为,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx﹣ax+ ﹣1. (Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)当a= 时,求函数f(x)的单调区间;
(Ⅲ)在(Ⅱ)的条件下,设函数g(x)=x2﹣2bx﹣ ,若对于x1∈[1,2],x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中 为自然对数的底数, …).

(1)若函数仅有一个极值点,求的取值范围;

(2)证明:当时,函数有两个零点 ,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ax2+(2﹣a)x. (Ⅰ)讨论f(x)的单调性;
(Ⅱ)设a>0,证明:当0<x< 时,f( +x)>f( ﹣x);
(Ⅲ)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0 , 证明:f′(x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点(1,1)且与曲线y=x3相切的切线方程为(
A.y=3x﹣2
B.y= x+
C.y=3x﹣2或y= x+
D.y=3x﹣2或y= x﹣

查看答案和解析>>

同步练习册答案