精英家教网 > 高中数学 > 题目详情
某客运部门规定甲、乙两地之间旅客托运行李的费用为:不超过25kg按0.5元/kg收费,超过25kg的部分按0.8元/kg收费,计算收费的程序框图如图所示,则①②处应填(  )
A.y=0.8xy=0.5x
B.y=0.5xy=0.8x
C.y=0.8x-7.5y=0.5x
D.y=0.8x+12.5y=0.8x
C
设行李的质量为xkg,则所需费用为:
y=
即y=
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

定义在R上的函数及二次函数满足:
(1)求的解析式;
(2)
(3)设,讨论方程的解的个数情况.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a·.
(1)当a=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=x3+sin x+1(x∈R)若f(a)=2,则f(-a)的值为 (  ).
A.3 B.0C.-1D.-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=ax2+bx+c(a≠0),且f(x)=2x没有实数根,那么f(f(x))=4x的实根个数为(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=ax2+bx+b-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的零点;
(2)若对任意b∈R,函数f(x)恒有两个不同零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在自然界中,存在着大量的周期函数,比如声波,若两个声波随时间的变化规律分别为:,则这两个声波合成后即的振幅为(   )
A.3B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

“求方程xx=1的解”有如下解题思路:设f(x)=xx,则f(x)在R上单调递减,且f(2)=1,所以原方程有唯一解x=2.类比上述解题思路,不等式x6-(x+2)>(x+2)3x2的解集是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若二次函数y=ax2+bx+c的图象与x轴交于A(-2,0),B(4,0),且函数的最大值为9,则这个二次函数的表达式是      .

查看答案和解析>>

同步练习册答案