精英家教网 > 高中数学 > 题目详情
某企业一天中不同时刻用电量y(单位:万千瓦时)关于时间t(0≤t≤24,单位:小时)的函数y=f(t)近似地满足f(t)=Asin(ωt+φ)+B,(A>0,ω>0,0<φ<π),如图是该企业一天中在0点到12点时间段用电量y与时间t的大致图象.
(1)求这一天0~12时用电量的最大差;
(2)写出这段曲线的函数解析式.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:应用题,三角函数的图像与性质
分析:(1)由图象可得用电量的最大差为1万千瓦时.
(2)由图象可得T=12,ω=
π
6
,可求得A,B,又函数y=0.5sin(
π
6
x+
φ)+2过点(0,2.5),又0<φ<π,从而解得φ,即可求得这段曲线的函数解析式.
解答: 解:(1)由图象可得用电量的最大差为1万千瓦时.
(2)由图象可得T=12,ω=
π
6

∵A=
ymax-ymin
2
=
2.5-1.5
2
=
1
2
,B=
ymax+ymin
2
=
2.5+1.5
2
=2,
∴y=0.5sin(
π
6
x+
φ)+2,
又函数y=0.5sin(
π
6
x+
φ)+2过点(0,2.5),代入可解得:φ=2kπ+
π
2

又∵0<φ<π,
∴φ=
π
2

综上可得:A=
1
2
ω=
π
6
,φ=
π
2
,B=
1
2

即有:f(t)=
1
2
sin(
π
6
t
+
π
2
)+2,
点评:本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.
(1)根据茎叶图计算样本均值;
(2)日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人;
(3)从抽出的6名工人中,任取2人,求恰有1名优秀工人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=sin(
1
2
x+
π
6
),g(x)与f(x)图象关于直线x=π对称,求g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=pan2+q(p,q∈R,n∈N+)则下列命题正确的是
 
(写出所有正确命题的编号)
①若a2=q,则a1=0;
②存在p,对于任意的q∈R,数列{an}既是等差数列又是等比数列;
③当p=1,q=0且a1=10时,lgan=2n-1
④若p=
1
4
,q=
3
4
且a1为奇数,则数列{an}的所有项都是奇数;
⑤若p=
1
4
,q=
3
4
,a1>0且an+1>an,则0<a1<1或a1>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线x+y=0和直线x-ay=0互相垂直,则a=
 
;若直线(a2+a)x+y=0和直线2x+y+1=0互相平行,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是偶函数,而且在上[1,6]是减函数,且有最小值为2,那么在[-6,-1]上说法正确的是(  )
A、增函数且有最小值为2
B、增函数且有最大值为2
C、减函数且有最小值为2
D、减函数且有最大值为2

查看答案和解析>>

科目:高中数学 来源: 题型:

过点(1,2)且斜率为3的直线方程为(  )
A、y=3x-3
B、y=3x-2
C、y=3x-1
D、y=x-1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域关于原点对称,且对于定义域内任意的x1≠x2;有f(x1-x2)=
1+f(x1)f(x2)
f(x2)-f(x1)
,则f(x)为
 
(填“偶函数”、“奇函数”).

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式(2x-1)(x+1)<0的解集是(  )
A、(-∞,-1)
B、(-1,
1
2
C、(-∞,-1)∪(
1
2
,+∞)
D、(-∞,
1
2
)

查看答案和解析>>

同步练习册答案