精英家教网 > 高中数学 > 题目详情
如图是不锈钢保温饭盒的三视图,根据图中数据(单位:cm),则该饭盒的表面积为(  )
A、1100πcm2
B、900πcm2
C、800πcm2
D、600πcm2
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由已知中的三视图可得,该几何体是一个圆柱与半球球的组合体,计算圆柱的底面面积,侧面积,半球的曲面面积,相加可得答案.
解答: 解:由已知中的三视图可得,该几何体是一个圆柱与半球球的组合体,
圆柱的底面半径(球半径)为r=10cm.
圆柱的高为h=30cm,
故组合体的表面积S=2πrh+3πr2=900900πcm2
故选:B
点评:本题考查了由三视图求几何体的表面积和体积,根据三视图判断几何体的形状及数据所对应的几何量是解答此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数y
(x-2)2+y2
+
(x-3)2+(y-1)2
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
1
6
x3+
1
2
(a-2)x2+b,g(x)=2alnx
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,0)处的切线互相垂直,求a,b的值.
(2)设F(x)=f′(x)-g(x),若对任意的x1,x2∈(0,+∞),且x1≠x2,都有F(x2)-F(x1)>a(x2-x1),并求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设对任意的正整数m,n,数列{an},{bn}满足3am+n=am•an,且a1=1,bm+n=bn+2m,且b5=13.
(1)求数列{an},{bn}的通项公式;
(2)设cn=
1
bnbn+1
,求数列{cn}的前n项和Sn
(3)设dn=nan,Tn是数列{dn}的前n项和,证明:1≤Tn
9
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图,根据图中标出的尺寸,可得这个几何体的体积是(  )
A、
1
12
B、
1
4
C、
1
6
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱柱ABC-A′B′C′的主视图和侧左视图如图所示.设△ABC的中心分别是O,O′,现将此三棱柱绕直线OO′旋转,在旋转过程中对应的俯视图的面积为S,则S的最大值为(  )
A、8B、4C、12D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个几何体的正(主)视图及侧(左)视图均是边长为3的正三角形,俯视图是直径为3的圆,则此几何体的体积为(  )
A、
9
2
π
B、9π
C、
9
8
3
π
D、12π

查看答案和解析>>

科目:高中数学 来源: 题型:

一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,三种视图如下所示,则这张桌子上碟子的个数为(  )
A、11B、12C、13D、14

查看答案和解析>>

科目:高中数学 来源: 题型:

圆锥的底面半径为3,高为1,则圆锥的侧面积为
 

查看答案和解析>>

同步练习册答案