精英家教网 > 高中数学 > 题目详情

【题目】2018101日起,中华人民共和国个人所得税新规定,公民月工资、薪金所得不超过5000元的部分不必纳税,超过5000元的部分为全月应纳税所得额,此项税款按下表分段累计计算:

全月应纳税所得额

税率

不超过1500元的部分

3

超过1500元不超过4500元的部分

10

超过4500元不超过9000元的部分

20

超过9000元不超过35000

25

如果小李10月份全月的工资、薪金为7000元,那么他应该纳税多少元?

如果小张10月份交纳税金425元,那么他10月份的工资、薪金是多少元?

写出工资、薪金收入与应缴纳税金的函数关系式.

【答案】(1);(2)元;(3)

【解析】

由分段累进思想,先算第一部分,再算第二部分,即可得到所求值;
考虑第一段1500元的税,再考虑3000元的税,进而算出第三部分的应交的,即可得到所求值;
分别考虑交税的前三部分,运用分段累进思想即可得到所求解析式.

解:

应交税为

小张10月份交纳税金425元,

由分段累进可得

则他10月份的工资、薪金是元;

时,可得

即为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知下面四个命题:

①“若,则”的逆否命题为“若,则

②“”是“”的充分不必要条件

③命题“若,则”的逆否命题为真命题

④若为假命题,则均为假命题,其中真命题个数为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=Acosωx+φ)(A0ω0φ0)的图象与y轴的交点为(01),它的一个最高点和一个最低点的坐标分别为(x02),(x0,﹣2),

1)若函数fx)的最小正周期为π,求函数fx)的解析式;

2)当x∈(x0x0)时,fx)图象上有且仅有一个最高点和一个最低点,且关于x的方程fx)﹣a0在区间[]上有且仅有一解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,分别为的中点,,如图1.以为折痕将折起,使点到达点的位置,如图2.

如图1 如图2

(1)证明:平面平面

(2)若平面平面,求直线与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )

(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;

(2)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速;

(3)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间.

A. (1)(2)(4) B. (4)(2)(1) C. (4)(3)(1) D. (4)(1)(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是( )

A. 命题的否定是:

B. 命题中,若,则的否命题是真命题

C. 如果为真命题,为假命题,则为真命题,为假命题

D. 是函数的最小正周期为的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】10四面体ABCD及其三视图如图所示平行于棱ADBC的平面分别交四面体的棱ABBDDCCA于点EFGH

1求四面体ABCD的体积

2证明四边形EFGH是矩形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题14分)

如图在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD平面ABCDPAPDPA=PDEF分别为ADPB的中点.

(Ⅰ)求证:PEBC

(Ⅱ)求证:平面PAB平面PCD

(Ⅲ)求证:EF平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对任意的正整数,总存在正整数,使得数列的前项和,则称回归数列

项和为的数列是否是回归数列?并请说明理由.通项公式为的数列是否是回归数列?并请说明理由;

)设是等差数列,首项,公差,若回归数列,求的值.

)是否对任意的等差数列,总存在两个回归数列,使得成立,请给出你的结论,并说明理由.

查看答案和解析>>

同步练习册答案