精英家教网 > 高中数学 > 题目详情
已知曲线E:ax2+by2=1(a>0,b>0),经过点M的直线l与曲线E交于点A、B,且=-2.
(1)若点B的坐标为(0,2),求曲线E的方程;
(2)若a=b=1,求直线AB的方程.
(1)x2=1(2)y=x-1.
(1)设A(x0,y0),由已知B(0,2),M(,0),所以=(x0,y0).
由于=-2,所以(-,2)=-2(x0,y0),所以即A(,-1),将A、B点的坐标代入曲线E的方程,得解得
所以曲线E的方程为x2=1.
(2)当a=b=1时,曲线E为圆x2+y2=1,设A(x1,y1),B(x2,y2).又=-2
所以=-2(x1,y1),
即有=1①,=1②,由①×4-②,得(2x1+x2)(2x1-x2)=3,所以2x1-x2,解得x1,x2=0.由x1,得y1=±.当A时,B(0,-1),此时kAB=-,直线AB的方程为y=-x+1;
当A时,B(0,1),此时kAB,直线AB的方程为y=x-1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知点是离心率为的椭圆上的一点,斜率为的直线交椭圆两点,且三点互不重合.

(1)求椭圆的方程;(2)求证:直线的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中点在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.

(1)求椭圆C的方程;
(2)己知点P(2,3),Q(2,-3)在椭圆上,点A、B是椭圆上不同的两个动点,且满足APQ=BPQ,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点为椭圆右焦点,圆与椭圆的一个公共点为,且直线与圆相切与点

(1)求的值及椭圆的标准方程;
(2)设动点满足,其中是椭圆上的点,为原点,直线的斜率之积为,求证:为定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知离心率为的双曲线和离心率为的椭圆有相同的焦点是两曲线的一个公共点,若,则等于(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.

(1)求椭圆C的方程;
(2)求△ABP面积取最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

给定椭圆C:=1(a>b>0),称圆心在原点O、半径是的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(,0),其短轴的一个端点到点F的距离为.
(1)求椭圆C和其“准圆”的方程;
(2)若点A是椭圆C的“准圆”与x轴正半轴的交点,B、D是椭圆C上的两相异点,且BD⊥x轴,求·的取值范围;
(3)在椭圆C的“准圆”上任取一点P,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F1、F2是椭圆=1(a>b>0)的左、右焦点,点M在x轴上,且,过点F2的直线与椭圆交于A、B两点,且AM⊥x轴,·=0.

(1)求椭圆的离心率;
(2)若△ABF1的周长为,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的右准线方程是     

查看答案和解析>>

同步练习册答案