精英家教网 > 高中数学 > 题目详情

中,是平面上的一点,点满足,则直线的(    )

垂心            B、重心         C、内心        D、外心

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,点D为AC的中点,点D1是A1C1上的一点,若BC1∥平面AB1D1,则
A1D1
D1C1
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)如图,长方体ABCD-A1B1C1D1中,底面ABCD是正方形,AA1=2AB=2,E是DD1上的一点.
(1)求证:AC⊥B1D;
(2)若B1D⊥平面ACE,求三棱锥A-CDE的体积;
(3)在(2)的条件下,求二面角D-AE-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为4的正方体ABCD-A1B1C1D1中,E是D1C1上的一点且EC1=3D1 E,
(1)求直线BE与平面ABCD所成角的大小;
(2)求异面直线BE与CD所成角的大小.(以上结果均用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1,x2∈R,常数a>0,定义运算“*”:x1*x2=(x1+x22-(x1-x22
(1)若x≥0,求动点P(x,
x*a
)
的轨迹C的方程;
(2)若a=2,不过原点的直线l与x轴、y轴的交点分别为T,S,并且与(1)中的轨迹C交于不同的两点P,Q,试求
|
ST
|
|
SP
|
+
|
ST
|
|
SQ
|
的取值范围;
(3)设P(x,y)是平面上的任意一点,定义d1(P)=
1
2
(x*x)+(y*y)
d2(P)
=
1
2
(x-a)*(x-a)
.若在(1)中的轨迹C存在不同的两点A1,A2,使得d1(Ai)=
a
d2(Ai)(i=1,2)
成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案