精英家教网 > 高中数学 > 题目详情

【题目】将一个棱长为a的正方体嵌入到四个半径为1且两两相切的实心小球所形成的球间空隙内,使得正方体能够任意自由地转动,则a的最大值为

【答案】
【解析】解:若在四个半径为1且两两相切的实心小球所形成的球间空隙内放置一个与其它球都相切的小球,
设该小球的半径为r,
则r+1+ =
解得:r=
若将一个棱长为a的正方体嵌入到四个半径为1且两两相切的实心小球所形成的球间空隙内,使得正方体能够任意自由地转动,
则: a=2r,
解得:a=
所以答案是:
【考点精析】根据题目的已知条件,利用球内接多面体的相关知识可以得到问题的答案,需要掌握球的内接正方体的对角线等于球直径;长方体的外接球的直径是长方体的体对角线长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,已知 a=2csinA.
(1)求角C的值;
(2)若c= ,且SABC= ,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:如图,两同心圆: . 为大圆上一动点,连结为坐标原点)交小圆于点,过点轴垂线(垂足为),再过点作直线的垂线,垂足为.

(1)当点在大圆上运动时,求垂足的轨迹方程;

(2)过点的直线交垂足的轨迹于两点,若以为直径的圆与轴相切,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是(

A.90cm2
B.129cm2
C.132cm2
D.138cm2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市某矿山企业生产某产品的年固定成本为万元,每生产千件该产品需另投入万元,设该企业年内共生产此种产品千件,并且全部销售完,每千件的销售收入为万元,且

(Ⅰ)写出年利润(万元)关于产品年产量(千件)的函数关系式;

(Ⅱ)问:年产量为多少千件时,该企业生产此产品所获年利润最大?

注:年利润=年销售收入-年总成本.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大小;
(2)求sinB+sinC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某特色餐馆开通了美团外卖服务,在一周内的某特色菜外卖份数(份)与收入(元)之间有如下的对应数据:

外卖份数(份)

2

4

5

6

8

收入(元)

30

40

60

50

70

(1)画出散点图;

(2)求回归直线方程;

(3)据此估计外卖份数为12份时,收入为多少元.

注:①参考公式:线性回归方程系数公式

②参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}为等差数列,Sn为其前n项和.若a3=﹣6,S1=S5 , 则公差d=;Sn的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,
(1)设 ,证明:数列{bn}是等差数列;
(2)求数列 的前n项和Sn

查看答案和解析>>

同步练习册答案