精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的左、右焦点分别为,椭圆的长轴长与焦距之比为,过且斜率不为的直线交于两点.

(1)当的斜率为时,求的面积;

(2)若在轴上存在一点,使是以为顶点的等腰三角形,求直线的方程.

【答案】(1)12(2)

【解析】

(1)结合椭圆的基本性质,分别计算a,b,c的值,代入直线方程,即可。(2)代入直线方程,结合等腰三角形底边和高相互垂直,建立等式,计算k,得到直线l的方程,即可

解:(1)依题意,因,又,得

所以椭圆的方程为

,当时,直线

将直线与椭圆方程联立

消去得,,解得

所以 .

(2)设直线的斜率为,由题意可知

,消去得,

恒成立,,线段的中点

是以为顶点的等腰三角形,则,得

整理得:.故直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(I)若,判断上的单调性;

(Ⅱ)求函数上的最小值;

(III)当时,是否存在正整数n,使恒成立?若存在,求出n的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过点的直线与椭圆交于两点,延长交椭圆于点的周长为8.

(1)求的离心率及方程;

(2)试问:是否存在定点,使得为定值?若存在,求;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过点的直线与椭圆交于两点,的周长为8,直线被椭圆截得的线段长为.

(1)求椭圆的方程;

(2)设是椭圆上两动点,线段的中点为的斜率分别为为坐标原点),且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线lmxy=1,若直线l与直线x+mm﹣1)y=2垂直,则m的值为_____,动直线lmxy=1被圆Cx2﹣2x+y2﹣8=0截得的最短弦长为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数上的最大值和最小值;

2)求证:当时,函数的图象在的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为,椭圆的长轴长与焦距之比为,过的直线交于两点.

(1)当的斜率为时,求的面积;

(2)当线段的垂直平分线在轴上的截距最小时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2)(本小题满分7分)选修4-4:坐标系与参数方程

在直接坐标系中,直线l的方程为x-y+4=0,曲线C的参数方程为.

I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4),判断点P与直线l的位置关系;

II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4件产品中,有一等品2件,二等品1件(一等品与二等品都是正品),次品1件,现从中任取2件,则下列说法正确的是(

A.两件都是一等品的概率是

B.两件中有1件是次品的概率是

C.两件都是正品的概率是

D.两件中至少有1件是一等品的概率是

查看答案和解析>>

同步练习册答案