精英家教网 > 高中数学 > 题目详情
5.现用数学归纳法证明“空间中n个平面,最多将空间分成$\frac{{{n^3}+5n+6}}{6}$个区域”,过程中由n=k到n=k+1时,应证明区域个数增加了(  )
A.$\frac{{{k^2}+k+2}}{2}$B.k2+k+2C.$\frac{{{k^2}+k}}{6}$D.$\frac{{{k^2}+1}}{6}$

分析 根据空间平面知识得到再添上第k+1个平面,因为它和前k个平面都相交,所以可得k条互不平行且不共点的交线,且其中任3条直线不共点,这k条交线可以把第k+1个平面划最多分成$\frac{1}{2}$[(k+1)2-(k+1)+2]=$\frac{{k}^{2}+k+2}{2}$个部分,问题得以解决.

解答 解:当n=k时,ak=$\frac{{k}^{3}+5k+6}{6}$,
当n=k+1时,再添上第k+1个平面,因为它和前k个平面都相交,所以可得k条互不平行且不共点的交线,且其中任3条直线不共点,这k条交线可以把第k+1个平面划最多分成$\frac{1}{2}$[(k+1)2-(k+1)+2]=$\frac{{k}^{2}+k+2}{2}$个部分,每个部分把它所在的原有空间区域划分成两个区域.因此,空间区域的总数增加了$\frac{{k}^{2}+k+2}{2}$个个,
故选:A.

点评 数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若(1)(奠基) P(n)在n=1时成立;2)(归纳) 在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.垂直于x轴的直线与函数y=$\sqrt{x}$+$\frac{1}{x}$图象的交点至多有(  )
A.0个B.1个C.2个D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=sin(2x-$\frac{π}{6}$)的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示,在长方体ABCD-A1B1C1D1中,AB=2,AD=3,AA1=2$\sqrt{6}$,点P是B1C的三等分点且靠近点C,则异面直线AP和DD1所成的角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{5π}{12}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.读如图的流程图,若输入的值为-5时,输出的结果是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.点P(5,-2)关于直线x-y+5=0 对称的点Q的坐标(-7,10).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若向量$\overrightarrow a$与$\overrightarrow b$满足|$\overrightarrow a$|=$\sqrt{2}$,|$\overrightarrow b$|=2,($\overrightarrow a$-$\overrightarrow b$)⊥$\overrightarrow a$.则向量$\overrightarrow a$与$\overrightarrow b$的夹角等于$\frac{π}{4}$,$\overrightarrow a$在$\overrightarrow b$上的投影=1,|$\overrightarrow a+\overrightarrow b$|=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在正方体ABCD-A1B1C1D1中,已知M,N分别是AB1,BB1的中点,则直线AM与CN所成角的余弦值为(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{10}}{10}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知复数z=$\frac{3+4i}{1+2i}$(i为虚数单位),则复数z的共轭复数的虚部为(  )
A.-$\frac{2}{5}$iB.$\frac{2}{5}i$C.$\frac{4}{5}$D.$\frac{2}{5}$

查看答案和解析>>

同步练习册答案