【题目】已知函数.
(1)若曲线在处的切线与直线垂直,求的值;
(2)当且时,函数的图象总在直线的下方,求实数的取值范围.
【答案】(1); (2).
【解析】
求出函数的导数,由切线方程可得,解方程即可;
由题意知,对任意恒成立等价于不等式对任意恒成立,
令函数,证明在恒成立即可;
对函数进行求导,利用导数判断函数的单调性,求最值即可求出实数的取值范围.
依题意,,
故,则,解得;
依题意,当时,恒成立,
即对任意恒成立,
令,证明在恒成立即可,
因为,
令,当时,图象开口向下,
又因为在上有两个零点1和,
①当时,即,此时在上恒成立,
函数在上单调递减,因为,
所以函数在恒成立,符合题意;
②当时,即,此时当时, ,
函数在上单调递减,因为,
所以函数在恒成立,符合题意;
③当时,即,此时当时,,
当时, ,
函数在上单调递增;在上单调递减;
所以,不符合题意;
综上可知,实数的取值范围为.
科目:高中数学 来源: 题型:
【题目】某鲜花店每天制作、两种鲜花共束,每束鲜花的成本为元,售价元,如果当天卖不完,剩下的鲜花作废品处理.该鲜花店发现这两种鲜花每天都有剩余,为此整理了过往100天这两种鲜花的日销量(单位:束),得到如下统计数据:
种鲜花日销量 | 48 | 49 | 50 | 51 |
天数 | 25 | 35 | 20 | 20 |
两种鲜花日销量 | 48 | 49 | 50 | 51 |
天数 | 40 | 35 | 15 | 10 |
以这100天记录的各销量的频率作为各销量的概率,假设这两种鲜花的日销量相互独立.
(1)记该店这两种鲜花每日的总销量为束,求的分布列.
(2)鲜花店为了减少浪费,提升利润,决定调查每天制作鲜花的量束.以销售这两种鲜花的日总利润的期望值为决策依据,在每天所制鲜花能全部卖完与之中选其一,应选哪个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex-ax-1(e为自然对数的底数),a>0.
(1)若函数f(x)恰有一个零点,证明:aa=ea-1;
(2)若f(x)≥0对任意x∈R恒成立,求实数a的取值集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四边形ABCD是正方形,AE⊥平面ABCD,PD∥AE,PD=AD=2EA=2,G,F,H分别为BE,BP,PC的中点.
(1)求证:平面ABE⊥平面GHF;
(2)求直线GH与平面PBC所成的角θ的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在椭圆上,为右焦点,轴,为椭圆上的四个动点,且,交于原点.
(1)判断直线与椭圆的位置关系;
(2设,满足,判断的值是否为定值,若是,请求出此定值,并求出四边形面积的最大值,否则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“二万五千里长征”是1934年10月到1936年10月中国工农红军进行的一次战略转移,是人类历史上的伟大奇迹,向世界展示了中国工农红军的坚强意志,在期间发生了许多可歌可泣的英雄故事.在中国共产党建党周年之际,某中学组织了“长征英雄事迹我来讲”活动,已知该中学共有高中生名,用分层抽样的方法从该校高中学生中抽取一个容量为的样本参加活动,其中高三年级抽了人,高二年级抽了人,则该校高一年级学生人数为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)若曲线上一点的极坐标为,且过点,求的普通方程和的直角坐标方程;
(2)设点,与的交点为,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com