精英家教网 > 高中数学 > 题目详情

【题目】已知 ,则对此不等式描叙正

确的是( )

A. 至少存在一个以为边长的等边三角形

B. 则对任意满足不等式的都存在为边长的三角形

C. 则对任意满足不等式的都存在为边长的三角形

D. 则对满足不等式的不存在为边长的直角三角形

【答案】B

【解析】本题可用排除法

对于可得故不存在这样的错误,排除对于 成立而以为边的三角形不存在, 错误,排除对于 时, 成立存在以为边的三角形为直角三角形,故错误排除故选B.

方法点睛】本题主要考查不等式的性质、排除法解选择题属于难题. 用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前 项和公式问题等等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线.

(1)求曲线被直线截得的弦长;

(2)与直线垂直的直线与曲线相切于点,求点的直线坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知偶函数的定义域为,值域为

(1)求实数的值;

(2)若,求实数的值;

(3)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球1个白球的甲箱与装有2个红球2个白球的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖.

)用球的标号列出所有可能的摸出结果;

)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I) 极大值;

(II) 求证:,其中,

(III)若方程有两个不同的根, 求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装厂品牌服装的年固定成本100万元,每生产1万件需另投入27万元,设服装厂一年内共生产该品牌服装万件并全部销售完,每万件的销售收入为R()万元.且

(1)写出年利润y(万元)关于年产量(万件)的函数关系式;

(2)年产量为多少万件时,服装厂在这一品牌的生产中所获年利润最大?(注:年利润=年销售收入-年总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,扇形AOB,圆心角AOB等于60°,半径为2,在弧AB上有一动点P,过P引平行于OB的直线和OA交于点C,设∠AOPθ,求△POC面积的最大值及此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,四边形ABCD为正方形,QA⊥平面ABCDPD∥QAQA=AB=PD

I)证明:PQ⊥平面DCQ

II)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线经过抛物线的焦点,且垂直于抛物线的对称轴,与抛物线两交点间的距离为4.

(1)求抛物线的方程;

(2)已知,过的直线与抛物线相交于两点,设直线的斜率分别为,求证:为定值,并求出定值.

查看答案和解析>>

同步练习册答案