精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线过点(3,-2)且与椭圆4x2+9y2=36有相同的焦点.

(I)求双曲线的标准方程.

(II)若点M在双曲线上, 是双曲线的左、右焦点,且|MF1|+|MF2|=试判断的形状.

【答案】(1) (2) 是钝角三角形

【解析】试题分析: 设双曲线方程为,由已知得,由此能求出双曲线的标准方程;

不妨设点在双曲线的右支上,则,利用,求出 的值,再由余弦定理可得,即可得出结论。

解析:(1)椭圆方程可化为,焦点在轴上,且

故可设双曲线方程为,

则有

解得

故双曲线的标准方程为.

(2)不妨设在双曲线的右支上,

则有|MF1|-|MF2|=又|MF1|+|MF2|=,

解得

因此在中, 边最长,

由余弦定理可得

.

所以 为钝角,故是钝角三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题错误的是( )
A.命题“若 ,则 ”的逆命题为“若 ,则
B.对于命题 ,使得 ,则 ,则
C.“ ”是“ ”的充分不必要条件
D.若 为假命题,则 均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差d≠0,它的前n项和为Sn,若S5=70,且a2a7a22成等比数列.

(1)求数列{an}的通项公式;

(2)设数列的前n项和为Tn,求证: Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次汉马(武汉马拉松比赛的简称)全程比赛中,50名参赛选手(24名男选手和26名女选手)的成绩(单位:分钟)分别为数据 (成绩不为0).

24名男选手成绩的茎叶图如图⑴所示,若将男选手成绩由好到差编为124号,再用系统抽样方法从中抽取6人,求其中成绩在区间上的选手人数;

Ⅱ)如图⑵所示的程序用来对这50名选手的成绩进行统计.为了便于区别性别,输入时,男选手的成绩数据用正数,女选手的成绩数据用其相反数(负数),请完成图⑵中空白的判断框①处的填写,并说明输出数值的统计意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为抛物线 的焦点,点为抛物线上一定点。

1直线过点交抛物线两点,若,求直线的方程;

(2)过点作两条倾斜角互补的直线分别交抛物线于异于点的两点,试证明直线的斜率为定值,并求出该定值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数yf(x)的导函数yf′(x)的图象则下面判断正确的是(   )

A. (21)f(x)是增函数 B. (13)f(x)是减函数

C. x2f(x)取极大值 D. x4f(x)取极大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个圆锥的底面半径为2,高为6,在其中有一个高为x的内接圆柱.

(1)x表示圆柱的轴截面面积S

(2)x为何值时,S最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 “存在”,命题“曲线表示焦点在轴上的椭圆”,命题 曲线表示双曲线”

1若“”是真命题,求实数的取值范围;

2的必要不充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥S﹣ABC的各顶点都在一个半径为r的球面上,且SA=SB=SC=1,AB=BC=AC=,则球的表面积为(  )

A. 12π B. C. D.

查看答案和解析>>

同步练习册答案