精英家教网 > 高中数学 > 题目详情

【题目】已知 。试问:当且仅当满足什么条件时,对上任意一点,均存在以为顶点、与外切、与 内接的平行四边形?并证明你的结论。

【答案】见解析

【解析】

所求条件为 .

必要性,易知,圆外切平行四边形一定是菱形,圆心即菱形中心.

假设结论成立,则对点,有为顶点的菱形与内接,与 外切.

的相对顶点为.由于菱形的对角线互相垂直平分,另外两个顶点必在轴上,为 .菱形一条边的方程为,即 .由菱形与外切,故必有,整理得 .

充分性.设上任意一点,过的弦,再过作与垂直的弦 ,则为与内接的菱形.设 ,则点的坐标为,点的坐标为.

代入椭圆方程得 .

于是,

.

中,设点的距离为 ,则,故得 .

同理,点的距离也为1,故菱形外切.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中正确的命题是(

A.标准差越小,则反映样本数据的离散程度越大

B.在回归直线方程中,当解释变量每增加1个单位时,则预报变量减少0.4个单位

C.对分类变量来说,它们的随机变量的观测值越小,有关系的把握程度越大

D.在回归分析模型中,残差平方和越小,说明模型的拟合效果越好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,已知

1)求证:

2)设上一点,试确定的位置,使平面,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为2菱形ABCD中,,且对角线ACBD交点为O沿BD折起,使点A到达点的位置.

1)若,求证:平面ABCD

2)若,求三棱锥体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了丰富学生的课外文化生活,某中学积极探索开展课外文体活动的新途径及新形式,取得了良好的效果.为了调查学生的学习积极性与参加文体活动是否有关,学校对200名学生做了问卷调查,列联表如下:

参加文体活动

不参加文体活动

合计

学习积极性高

80

学习积极性不高

60

合计

200

已知在全部200人中随机抽取1人,抽到学习积极性不高的学生的概率为.

1)请将上面的列联表补充完整;

2)是否有99.9%的把握认为学习积极性高与参加文体活动有关?请说明你的理由;

3)若从不参加文体活动的同学中按照分层抽样的方法选取5人,再从所选出的5人中随机选取2人,求至少有1人学习积极性不高的概率.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱 的中点.

1证明 平面

2 求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左、右焦点,点在椭圆上,线段轴的交点满足.

(1)求椭圆的标准方程;

(2)过点作不与轴重合的直线,设与圆相交于两点,与椭圆相交于两点,当时,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有关于的一元二次方程

)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率.

)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四色猜想是近代数学难题之一,四色猜想的内容是:任何一张地图最多用四种颜色就能使具有共同边界的国家着上不同的颜色,如图,一张地图被分成了五个区域,每个区域只使用一种颜色,现有4种颜色可供选择(四种颜色不一定用完),则满足四色猜想的不同涂色种数为__________

查看答案和解析>>

同步练习册答案