精英家教网 > 高中数学 > 题目详情
平移f (x)=sin(ωx+?)(ω>0,-
π
2
<?<
π
2
),给出下列4个论断:(1)图象关于x=
π
12
对称(2)图象关于点(
π
3
,0)对称      (3)最小正周期是π      (4)在[-
π
6
,0]上是增函数以其中两个论断作为条件,余下论断为结论,写出你认为正确的两个命题:(1)______.(2)______.
(1):①②?③④.
由①得ω×
π
12
+∅=kπ+
π
2
,k∈z.  由②得ω
π
3
+∅=kπ,k∈z.
又∵ω>0,-
π
2
<?<
π
2
,故有ω=2,∅=
π
3

f(x)=sin(2x+
π
3
)
,其周期为π.
2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,可得 kπ-
12
≤x≤kπ+
π
12

故函数f(x)的增区间为[kπ-
12
, kπ+
π
12
],k∈z.
[-
π
6
,0]⊆[-
12
π
12
]

∴f(x)在区间[-
π
6
,0
]上是增函数,
故可得 ①②?③④.
(2):还可①③?②④.
由③它的周期为π,可得ω=2,故 f(x)=sin(2x+∅).
由①得  2×
π
12
+∅=kπ+
π
2
,k∈z.再由 -
π
2
<?<
π
2
可得φ=
π
3
,故函数f(x)=sin(2x+
π
3
).
显然它的图象关于点(
π
3
,0)对称,由(1)可得 f(x)在区间[-
π
6
,0
]上是增函数.
故可得 ①③?②④.
故答案为 (1):①②?③④;  (2):①③?②④.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于函数f(x)=sin(2x+
π
3
),x∈R,有下列命题:
①把函数f(x)的图象向右平移
π
12
个单位后,可得y=cos2x的图象;
②函数f(x)的图象关于点(
π
6
,0
)对称;
③函数f(x)的图象关于直线x=-
12
对称;
④把函数f(x)的图象上每个点的横坐标缩小到原来的
1
2
,得到函数y=sin(x+
π
6
)的图象,其中正确的命题序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

平移f (x)=sin(ωx+?)(ω>0,-
π
2
<?<
π
2
),给出下列4个论断:(1)图象关于x=
π
12
对称(2)图象关于点(
π
3
,0)对称      (3)最小正周期是π      (4)在[-
π
6
,0]上是增函数以其中两个论断作为条件,余下论断为结论,写出你认为正确的两个命题:(1)
①②⇒③④
①②⇒③④
.(2)
①③⇒②④
①③⇒②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平移f (x)=sin(ωx+?)(ω>0,-数学公式<?<数学公式),给出下列4个论断:(1)图象关于x=数学公式对称(2)图象关于点(数学公式,0)对称   (3)最小正周期是π   (4)在[-数学公式,0]上是增函数以其中两个论断作为条件,余下论断为结论,写出你认为正确的两个命题:(1)________.(2)________.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省成都37中高考一轮复习数学专项训练:三角函数(解析版) 题型:解答题

平移f (x)=sin(ωx+ϕ)(ω>0,-<ϕ<),给出下列4个论断:(1)图象关于x=对称(2)图象关于点(,0)对称      (3)最小正周期是π      (4)在[-,0]上是增函数以其中两个论断作为条件,余下论断为结论,写出你认为正确的两个命题:(1)    .(2)   

查看答案和解析>>

同步练习册答案