精英家教网 > 高中数学 > 题目详情
19.在△ABC中,A,B,C的对边分别为$a,b,c,\overrightarrow m=({a,0}),\overrightarrow b=({1,cosB})$,且$\overrightarrow m•\overrightarrow n=2acosB$.
(1)求B的大小;
(2)若△ABC的面积为$2\sqrt{3}$,且a+c=6,求b.

分析 (1)根据$\overrightarrow{m}$•$\overrightarrow{n}$=2acosB,得a=2acosB,求出B的值即可;(2)根据三角形的面积求出ac=8,由a+c=6,联立方程组,求出a,c的值,根据余弦定理求出b的值即可.

解答 解:(1)由$\overrightarrow{m}$=(a,0),$\overrightarrow{n}$=(1,cosB),
$\overrightarrow{m}$•$\overrightarrow{n}$=2acosB,得a=2acosB,
故cosB=$\frac{1}{2}$,得B=$\frac{π}{3}$;
(2)S△ABC=$\frac{1}{2}$acsinB=2$\sqrt{3}$得ac=8,
联立$\left\{\begin{array}{l}{ac=8}\\{a+c=6}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=4}\\{c=2}\end{array}\right.$或$\left\{\begin{array}{l}{a=2}\\{c=4}\end{array}\right.$,
由余弦定理得b2=16+4-8=12,
解得:b=2$\sqrt{3}$.

点评 本题考查了向量的乘法,考查余弦定理的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=2\sqrt{3}sinxcosx+2{cos^2}x-1$,则下列说法正确的是(  )
A.$(\frac{7π}{12},0)$是函数y=f(x)的对称中心B.$x=\frac{7π}{12}$是函数y=f(x)的对称轴
C.$(-\frac{π}{12},0)$是函数y=f(x)的对称中心D.$x=-\frac{π}{12}$是函数y=f(x)的对称轴

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若坐标原点在圆x2+y2-2mx+2my+2m2-4=0的内部,则实数m的取值范围是(  )
A.(-1,1)B.(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)C.(-$\sqrt{3}$,$\sqrt{3}$)D.(-$\sqrt{2}$,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知F(1,0)为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点,离心率$\frac{\sqrt{2}}{2}$.
(1)求椭圆的方程;
(2)P为椭圆上一点,椭圆在P点处的切线与直线x=c和右准线x=$\frac{{a}^{2}}{c}$分别交于点M,N.
①若P(0,1),求$\frac{MF}{NF}$的值;
②探究当P在椭圆上移动时,$\frac{MF}{NF}$的值是否为定值?若是,求出此定值,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)=\left\{\begin{array}{l}({3-a})x-1,x≤5\\{a^{x-4}},x>5\end{array}\right.({a>0,a≠1})$,数列{an}满足${a_n}=f(n)({n∈{N^*}})$,且{an}是单调递增数列,则实数a的取值范围是(  )
A.(1,3)B.(2,3)C.$[{\frac{7}{3},3})$D.$({1,\frac{7}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若偶函数y=f(x)(x∈R)满足f(1+x)=f(1-x),且当x∈[-1,0]时,f(x)=x2,则函数g(x)=f(x)-|lgx|的零点个数为10个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图正四面体(所有棱长都相等)D-ABC中,动点P在平面BCD上,且满足∠PAD=30°,若点P在平面ABC上的射影为P′,则sin∠P′AB的最大值为(  )
A.$\frac{2\sqrt{7}}{7}$B.$\frac{\sqrt{6}-\sqrt{2}}{4}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左,右焦点分别为F1,F2,上顶点为B.Q为抛物线y2=24x的焦点,且$\overrightarrow{{F_1}B}•\overrightarrow{QB}=0$,$2\overrightarrow{{F_1}{F_2}}+\overrightarrow{Q{F_1}}$=0
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过定点P(0,4)的直线l与椭圆C交于M,N两点(M在P,N之间),设直线l的斜率为k(k>0),在x轴上是否存在点A(m,0),使得以AM,AN为邻边的平行四边形为菱形?若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\sqrt{lo{g}_{\frac{1}{2}}(2x+1)}$的定义域为(  )
A.(-$\frac{1}{2}$,0)B.(-$\frac{1}{2}$,0]C.(-$\frac{1}{2}$,+∞)D.(0,+∞)

查看答案和解析>>

同步练习册答案