精英家教网 > 高中数学 > 题目详情

【题目】若函数的图象与曲线C:存在公共切线,则实数的取值范围为

A. B. C. D.

【答案】A

【解析】

设公切线与f(x)、g(x)的切点坐标,由导数的几何意义、斜率公式列出方程化简,分离出a后构造函数,求出函数的最值,即可求出实数a的取值范围.

设公切线与f(x)=x2+1的图象切于点(x1),

与曲线C:g(x)=aex+1切于点(x2),

∴2x1

化简可得,2x1,得x1=02x2=x1+2,

∵2x1,且a>0,∴x1>0,则2x2=x1+2>2,即x2>1,

2x1a=

h(x)=(x>1),则h′(x)=

∴h(x)在(1,2)上递增,在(2,+∞)上递减,

∴h(x)max=h(2)=

∴实数a的取值范围为(0,],

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校共有教师300人,其中中级教师有120人,高级教师与初级教师的人数比为.为了解教师专业发展要求,现采用分层抽样的方法进行调查,在抽取的样本中有中级教师72人,则该样本中的高级教师人数为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.

1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;

2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下表格.

i)请将表格补充完整;

短潜伏者

长潜伏者

合计

60岁及以上

90

60岁以下

140

合计

300

ii)研究发现,某药物对新冠病毒有一定的抑制作用,现需在样本中60岁以下的140名患者中按分层抽样方法抽取7人做I期临床试验,再从选取的7人中随机抽取两人做Ⅱ期临床试验,求两人中恰有1人为“长潜伏者”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,,点满足,记点的轨迹为

1)求的方程;

2)设直线交于两点,求的面积(为坐标原点);

3)设是线段中垂线上的动点,过的两条切线,分别为切点,判断是否存在定点,直线始终经过点,若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,四边形是菱形,四边形是正方形,,点的中点.

(1)求证:平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两地的高速公路全长166千米,汽车从甲地进入该高速公路后匀速行驶到乙地,车速(千米/时).已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分为,固定部分为220.

(1)把全程运输成本(元)表示为速度(千米/时)的函数,并指出这个函数的定义域;

(2)汽车应以多大速度行驶才能使全程运输成本最小?最小运输成本为多少元?(结果保留整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:

月份

1

2

3

4

5

违章驾驶员人数

120

105

100

90

85

(1)请利用所给数据求违章人数y与月份之间的回归直线方程+

(2)预测该路口7月份的不“礼让斑马线”违章驾驶员人数;

(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下2列联表:

不礼让斑马线

礼让斑马线

合计

驾龄不超过1年

22

8

30

驾龄1年以上

8

12

20

合计

30

20

50

能否据此判断有97.5的把握认为“礼让斑马线”行为与驾龄有关?

参考公式及数据:,.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性;

(Ⅱ)当时,令,其导函数为,设是函数的两个零点,判断是否为的零点?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:

研发费用(百万元)

2

3

6

10

13

15

18

21

销量(万盒)

1

1

2

2.5

3.5

3.5

4.5

6

(1)求的相关系数精确到0.01,并判断的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);

(2)该药企准备生产药品的三类不同的剂型,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型合格的概率分别为,第二次检测时,三类剂型合格的概率分别为.两次检测过程相互独立,设经过两次检测后三类剂型合格的种类数为,求的数学期望.

附:(1)相关系数

2

查看答案和解析>>

同步练习册答案