精英家教网 > 高中数学 > 题目详情
1.已知${(\sqrt{x}-\frac{2}{x^2})^n}\;(n∈{N_+})$的展开式中第五项系数与第三项的系数的比值是10.
(1)求展开式的各项系数和及二项式系数和;
(2)求展开式中x-1的项的系数;
(3)求展开式中系数绝对值最大的项.

分析 通过展开式中第五项的系数与第三项的系数的比是10:1得到n值,然后求要求的特征项.

解答 解:(1)由题意,第五项系数和第三项系数比值是10,即$\frac{{C}_{n}^{4}•(-2)^{4}}{{C}_{n}^{2}•(-2)^{2}}$=10,
化简得n2-5n-24=0,解得n=8或n=-3(舍去).
(1)令x=1得各项系数和为(1-2)8=1;二项式系数和28=256;
(2)通项公式为Tr+1=$(-2)^{r}{C}_{8}^{r}{x}^{4-\frac{5r}{2}}$,
令4-$\frac{5r}{2}$=-1,则r=2,
所以展开式中含x-1的项的系数为112;
(3)由2r-1C8r-1≥2rC8r,2r-1C8r-1≥2r-2C8r-2,解得r=5或6,
∴展开式中系数绝对值最大的项为T6=-1792${x}^{-\frac{17}{2}}$,T7=1792x11

点评 本题考查了二项式定理的运用;关键是利用已知求出指数后,找出二项式的展开式通项,根据x的指数求特征项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若函数$f(x)=lgsin({ωx+\frac{π}{6}})({ω>0})$的最小正周期为π,则f(x)在[0,π]上的递减区间为[$\frac{π}{6}$,$\frac{5π}{12}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.程序框图如图,若输入S=1,k=1,则输出的S为26.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=cos(x+φ)(0≤φ≤π)的定义域为R,若f(x)为奇函数,则φ=(  )
A.0B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.定义为n个正数p1,p2,p3…pn的“均倒数”,若已知数列{an}的前n项的“均倒数”为$\frac{1}{2n+1}$,又${b_n}=\frac{{{a_n}+1}}{4}$,则$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+\frac{1}{{{b_3}{b_4}}}+$…$+\frac{1}{{{b_{2015}}{b_{2016}}}}$=(  )
A.$\frac{2013}{2014}$B.$\frac{2014}{2015}$C.$\frac{2015}{2016}$D.$\frac{1}{2015}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列叙述正确的是(  )
A.第一或第二象限的角都可作为三角形的内角
B.钝角比第三象限的角小
C.第四象限的角一定是负角
D.始边相同而终边不同的角一定不相等

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某大型汽车城为了了解销售单价(单位:万元)在[8,20]内的轿车的销售情况,从2016年上半年已经销售的轿车中随机抽取100辆,按其销售单价分成6组,制成如下的频数分布表.
销售单价/万元[8,10)[10,12)[12,14)[14,16)[16,18)[18,20]
频数/辆51020a20b
已知样本中销售单价在[14,16)内的轿车数是销售单价在[18,20]内的轿车数的2倍.
(1)用分层抽样的方法从单价在[8,10),[10,12)和[18,20]内的轿车中共抽取6辆,求销售单价在[18,20]内的轿车数;
(2)在(1)中抽出的6辆轿车中任取2辆,求至少有1辆轿车的销售单价在[18,20]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示的多面体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,且AC=BC=BD=2AE=2,M,N分别为AB,DE的中点.
(Ⅰ)求证:MN∥平面BCD;
(Ⅱ)求平面EMC与平面BCD所成的锐二面角的余弦值;
(Ⅲ)在线段CD上是否存在点F,使直线MF与平面EMC所成角为$\frac{π}{6}$,若存在,求出CF的长,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.了研究某种细菌在特定环境下随时间变化的繁殖情况,得如下实验数据:
天数t(天)34567
繁殖个数y(千个)2.5344.56
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,预测t=8时,细菌繁殖个数.

查看答案和解析>>

同步练习册答案