精英家教网 > 高中数学 > 题目详情
用反证法证明命题“若a2+b2+c2=0,则a=b=c=0”时,第一步应假设(  )
分析:用反证法证明命题的真假,先假设命题的结论不成立,从这个结论出发,经过推理论证,得出与题设或与已知条件或与事实相矛盾,从而肯定命题的结论正确.
解答:解:用反证法证明命题的真假,先假设命题的结论不成立,
所以用反证法证明命题“若a2+b2+c2=0,则a=b=c=0”时,第一步应假设a≠0或b≠0或c≠0,
故选C.
点评:反证法是指“证明某个命题时,先假设它的结论的否定成立,然后从这个假设出发,根据命题的条件和已知的真命题,经过推理,得出与已知事实相矛盾的结果,本题解题的关键是小于对结论全盘否定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用反证法证明命题:“若x>0,y>0 且x+y>2,则
1+y
x
1+x
y
中至少有一个小于2”时,应假设
 

查看答案和解析>>

科目:高中数学 来源: 题型:

3、用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题:“若直线AB、CD是异面直线,则直线AC、BD也是异面直线”的过程归纳为以下三个步骤:
①则A,B,C,D四点共面,所以AB、CD共面,这与AB、CD是异面直线矛盾;
②所以假设错误,即直线AC、BD也是异面直线;
③假设直线AC、BD是共面直线;
则正确的序号顺序为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题:“若a+b>0,ab>0,则a,b全为正数”时,反设正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题:“若整数系数一元二次方程ax2+bx+c=0(a≠o)有有理根,那么 a,b,c中至少有一个是偶数”时,应假设(  )

查看答案和解析>>

同步练习册答案