【题目】设为正整数,各项均为正整数的数列定义如下: ,
(1)若,写出,,;
(2)求证:数列单调递增的充要条件是为偶数;
(3)若为奇数,是否存在满足?请说明理由.
【答案】(1),,;(2)证明见解析;(3)存在,理由见解析.
【解析】
(1)时,结合条件,注意求得,,;
(2)根据与零的关系,判断数列单调递增的充要条件;
(3)存在满足.
(1),,.
(2)先证“充分性”.
当为偶数时,若为奇数,则为奇数.
因为为奇数,所以归纳可得,对,均为奇数,则,
所以,
所以数列单调递增.
再证“必要性”.
假设存在使得为偶数,则,与数列单调递增矛盾,
因此数列中的所有项都是奇数.
此时,即,所以为偶数.
(3)存在满足,理由如下:
因为,为奇数,所以且为偶数,.
假设为奇数时, ;为偶数时,.
当为奇数时,,且为偶数;
当为偶数时,.
所以若为奇数,则;若为偶数,则.
因此对都有.
所以正整数数列中的项的不同取值只有有限个,所以其中必有相等的项.
设集合,设集合.
因为,所以.
令是中的最小元素,下面证.
设且.
当时,,,所以;
当时,,,所以.
所以若,则且,与是中的最小元素矛盾.
所以,且存在满足,即存在满足.
科目:高中数学 来源: 题型:
【题目】“绿水青山就是金山银山”的生态文明发展理念已经深入人心,这将推动新能源汽车产业的迅速发展,下表是近几年我国某地区新能源乘用车的年销售量与年份的统计表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
销量(万台) | 8 | 10 | 13 | 25 | 24 |
某机构调查了该地区30位购车车主的性别与购车种类情况,得到的部分数据如下表所示:
购置传统燃油车 | 购置新能源车 | 总计 | |
男性车主 | 6 | 24 | |
女性车主 | 2 | ||
总计 | 30 |
(1)求新能源乘用车的销量关于年份的线性相关系数,并判断与是否线性相关;
(2)请将上述列联表补充完整,并判断是否有的把握认为购车车主是否购置新能源乘用车与性别有关;
参考公式:,,其中.,若,则可判断与线性相关.
附表:
0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司要在一条笔直的道路边安装路灯,要求灯柱AB与底面垂直,灯杆BC与灯柱AB所在的平面与道路走向垂直,路灯C采用锥形灯罩,射出的管线与平面ABC部分截面如图中阴影所示,路宽AD=24米,设
(1)求灯柱AB的高h(用表示);
(2)此公司应该如何设置的值才能使制作路灯灯柱AB和灯杆BC所用材料的总长度最小?最小值为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:x2=2py(p>0),直线l交C于A,B两点,且A,B两点与原点不重合,点M(1,2)为线段AB的中点.
(1)若直线l的斜率为1,求抛物线C的方程;
(2)分别过A,B两点作抛物线C的切线,若两条切线交于点S,证明点S在一条定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线,相邻对称轴之间的距离为,且函数在处取得最大值,则下列命题正确的个数为( )
①当时,m的取值范围是;②将的图象向左平移个单位后所对应的函数为偶函数;③函数的最小正周期为;④函数在区间上有且仅有一个零点.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为定义在上的奇函数,当时,有,且当时,,下列命题正确的是( )
A.B.函数在定义域上是周期为的函数
C.直线与函数的图象有个交点D.函数的值域为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了节能减排,发展低碳经济,我国政府从2001年起就通过相关政策推动新能源汽车产业发展.下面的图表反映了该产业发展的相关信息:
中国新能源汽车产销情况一览表 | ||||
新能源汽车生产情况 | 新能源汽车销售情况 | |||
产品(万辆) | 比上年同期 | 销量(万辆) | 比上年同期 | |
2018年3月 | 6.8 | 105 | 6.8 | 117.4 |
4月 | 8.1 | 117.7 | 8.2 | 138.4 |
5月 | 9.6 | 85.6 | 10.2 | 125.6 |
6月 | 8.6 | 31.7 | 8.4 | 42.9 |
7月 | 9 | 53.6 | 8.4 | 47.7 |
8月 | 9.9 | 39 | 10.1 | 49.5 |
9月 | 12.7 | 64.4 | 12.1 | 54.8 |
10月 | 14.6 | 58.1 | 13.8 | 51 |
11月 | 17.3 | 36.9 | 16.9 | 37.6 |
1-12月 | 127 | 59.9 | 125.6 | 61.7 |
2019年1月 | 9.1 | 113 | 9.6 | 138 |
2月 | 5.9 | 50.9 | 5.3 | 53.6 |
根据上述图表信息,下列结论错误的是( )
A.2017年3月份我国新能源汽车的产量不超过万辆
B.2017年我国新能源汽车总销量超过万辆
C.2018年8月份我国新能源汽车的销量高于产量
D.2019年1月份我国插电式混合动力汽车的销量低于万辆
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l的参数方程为(t为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系.曲线C的极坐标方程为.
(1)求直线l的普通方程及曲线C的直角坐标方程;
(2)设点,直线l与曲线C相交于A,B两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列中,已知,对任意都成立,数列的前n项和为.
(1)若是等差数列,求k的值;
(2)若,,求;
(3)是否存在实数k,使数列是公比不为1的等比数列,且任意相邻三项,,按某顺序排列后成等差数列?若存在,求出所有k的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com