【题目】已知向量,,,,函数,的最小正周期为.
(1)求的单调增区间;
(2)方程;在上有且只有一个解,求实数n的取值范围;
(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2∈R,使得++m(-)+1>f(x2)成立.若存在,求m的取值范围;若不存在,说明理由.
【答案】(1),(2)或(3)存在,且m取值范围为
【解析】
(1)函数,的最小正周期为.可得,即可求解的单调增区间.
(2)根据x在上求解的值域,即可求解实数n的取值范围;
(3)由题意,求解的最小值,利用换元法求解的最小值,即可求解m的范围.
(1)函数f(x)1=2sin2(ωx)cos(2ωx)﹣1
=sin(2ωx)cos(2ωx)
=2sin(2ωx)
∵f(x)的最小正周期为π.ω>0
∴,
∴ω=1.
那么f(x)的解析式f(x)=2sin(2x)
令2x,k∈Z
得:x
∴f(x)的单调增区间为[,],k∈Z.
(2)方程f(x)﹣2n+1=0;在[0,]上有且只有一个解,
转化为函数y=f(x)+1与函数y=2n只有一个交点.
∵x在[0,]上,
∴(2x)
那么函数y=f(x)+1=2sin(2x)+1的值域为[,2],结合图象可知
函数y=f(x)+1与函数y=2n只有一个交点.
那么2n<1或2n=2,
可得或n=1.
(3)由(1)可知f(x)=2sin(2x)
∴f(x2)min=﹣2.
实数m满足对任意x1∈[﹣1,1],都存在x2∈R,
使得m()+1>f(x2)成立.
即m()+1>﹣2成立
令ym()+1
设t,那么()2+2=t2+2
∵x1∈[﹣1,1],
∴t∈[,],
可得t2+mt+5>0在t∈[,]上成立.
令g(t)=t2+mt+5>0,
其对称轴t
∵t∈[,]上,
∴①当时,即m≥3时,g(t)min=g(),解得;
②当,即﹣3<m<3时,g(t)min=g()0,解得﹣3<m<3;
③当,即m≤﹣3时,g(t)min=g()0,解得m≤﹣3;
综上可得,存在m,可知m的取值范围是(,).
科目:高中数学 来源: 题型:
【题目】下列四个命题:
①残差平方和越小的模型,拟合的效果越好;
②用相关指数来刻画回归效果,越小,说明模型拟合的效果越好;
③散点图中所有点都在回归直线附近;
④随机误差满足,其方差的大小可用来衡量预报精确度.
其中正确命题的个数是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“双十一网购狂欢节”源于淘宝商城(天猫)2009年11月11 日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是11月11日成为天猫举办大规模促销活动的固定日期.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商分析近8年“双十一”期间的宣传费用(单位:万元)和利润(单位:十万元)之间的关系,得到下列数据:
2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(1)请用相关系数说明与之间是否存在线性相关关系(当时,说明与之间具有线性相关关系);
(2)根据(1)的判断结果,建立与之间的回归方程,并预测当时,对应的利润为多少(精确到0.1).
附参考公式:回归方程中中和最小二乘估计分别为
,相关系数
参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行抽奖活动,从装有编号0,1,2,3四个球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于6中特等奖,等于5中一等奖,等于4中二等奖,等于3中三等奖.
(1)求中二等奖的概率;
(2)求未中奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数).
(1)将, 的方程化为普通方程,并说明它们分别表示什么曲线?
(2)以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,已知直线的极坐标方程为.若上的点对应的参数为,点在上,点为的中点,求点到直线距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径,两点间的距离,现在珊瑚群岛上取两点,,测得,,,,则,两点的距离为___.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某营养协会对全市18岁男生的身高作调查,统计显示全市18岁男生的身高服从正态分布,现某校随机抽取了100名18岁男生的身高分析,结果这100名学生的身高全部介于到之间.现将结果按如下方式分为6组,第一组,第二组,…,第六组,得到如图所示的频率分布直方图.
(1)若全市18岁男生共有人,试估计该市身高在以上的18岁男生人数;
(2)求的值,并计算该校18岁男生的身高的中位数(精确到小数点后三位);
(3)若身高以上的学生校服需要单独定制,现从这100名学生中身高在以上的同学中任意抽取3人,这三人中校服需要单独定制的人数记为,求的分布列和期望.
附: ,则;
,则;
,则.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com