精英家教网 > 高中数学 > 题目详情

【题目】已知向量,函数的最小正周期为

(1)求的单调增区间;

(2)方程;在上有且只有一个解,求实数n的取值范围;

(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2R,使得++m-)+1>fx2)成立.若存在,求m的取值范围;若不存在,说明理由.

【答案】(1)(2)(3)存在且m取值范围为

【解析】

(1)函数的最小正周期为.可得,即可求解的单调增区间

(2)根据x上求解的值域,即可求解实数n的取值范围

(3)由题意,求解的最小值,利用换元法求解的最小值,即可求解m的范围

(1)函数fx1=2sin2(ωxcos(2ωx)﹣1

=sin(2ωxcos(2ωx

=2sin(2ωx

fx)的最小正周期为π.ω>0

∴ω=1.

那么fx)的解析式fx)=2sin(2x

2xkZ

得:x

fx)的单调增区间为[],kZ

(2)方程fx)﹣2n+1=0;在[0,]上有且只有一个解,

转化为函数yfx)+1与函数y=2n只有一个交点.

x在[0,]上,

(2x

那么函数yfx)+1=2sin(2x)+1的值域为[,2],结合图象可知

函数yfx)+1与函数y=2n只有一个交点.

那么2n<1或2n=2,

可得n=1.

(3)由(1)可知fx)=2sin(2x

fx2min=﹣2.

实数m满足对任意x1∈[﹣1,1],都存在x2R

使得m)+1>fx2)成立.

m)+1>﹣2成立

ym)+1

t,那么2+2=t2+2

x1∈[﹣1,1],

t[],

可得t2+mt+5>0在t[]上成立.

gt)=t2+mt+5>0,

其对称轴t

t[]上,

∴①当时,即m≥3时,gtming,解得

②当,即﹣3<m<3时,gtming0,解得﹣3<m<3;

③当,即m≤﹣3时,gtming0,解得m≤﹣3;

综上可得,存在m,可知m的取值范围是().

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列四个命题:

①残差平方和越小的模型,拟合的效果越好;

②用相关指数来刻画回归效果,越小,说明模型拟合的效果越好;

③散点图中所有点都在回归直线附近;

④随机误差满足,其方差的大小可用来衡量预报精确度.

其中正确命题的个数是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角中,角ABC所对边分别为abc,已知

(1)求A

(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△中,已知,直线经过点

(Ⅰ)若直线:与线段交于点,且为△的外心,求△的外接圆的方程;

(Ⅱ)若直线方程为,且△的面积为,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“双十一网购狂欢节”源于淘宝商城(天猫)2009年11月11 日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是11月11日成为天猫举办大规模促销活动的固定日期.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商分析近8年“双十一”期间的宣传费用(单位:万元)和利润(单位:十万元)之间的关系,得到下列数据:

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

(1)请用相关系数说明之间是否存在线性相关关系(当时,说明之间具有线性相关关系);

(2)根据(1)的判断结果,建立之间的回归方程,并预测当时,对应的利润为多少(精确到0.1).

附参考公式:回归方程中最小二乘估计分别为

,相关系数

参考数据:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行抽奖活动,从装有编号0123四个球的抽奖箱中,每次取出后放回,连续取两次,取出的两个小球号码相加之和等于6中特等奖,等于5中一等奖,等于4中二等奖,等于3中三等奖.

1)求中二等奖的概率;

2)求未中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),曲线的参数方程为为参数).

(1)将 的方程化为普通方程,并说明它们分别表示什么曲线?

(2)以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,已知直线的极坐标方程为.若上的点对应的参数为,点上,点的中点,求点到直线距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径两点间的距离,现在珊瑚群岛上取两点,测得,则两点的距离为___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某营养协会对全市18岁男生的身高作调查,统计显示全市18岁男生的身高服从正态分布,现某校随机抽取了100名18岁男生的身高分析,结果这100名学生的身高全部介于之间.现将结果按如下方式分为6组,第一组,第二组,…,第六组,得到如图所示的频率分布直方图.

(1)若全市18岁男生共有人,试估计该市身高在以上的18岁男生人数;

(2)求的值,并计算该校18岁男生的身高的中位数(精确到小数点后三位);

(3)若身高以上的学生校服需要单独定制,现从这100名学生中身高在以上的同学中任意抽取3人,这三人中校服需要单独定制的人数记为,求的分布列和期望.

附: ,则

,则

,则.

查看答案和解析>>

同步练习册答案