精英家教网 > 高中数学 > 题目详情
13.一个玩具盘由一个直径为2米的半圆O和一个矩形ABCD构成,AB=1米,如图所示,小球从A点出发以大小为5v的速度沿半圆O轨道滚到某点E处,经弹射器以6v的速度沿与点E切线垂直的方向弹射到落袋区BC内,落点记为F,设∠AOE=θ弧度,小球从A到F所需时间为T.
(1)试将T表示为θ的函数T(θ),并写出定义域;
(2)求时间T最短时θ的值.

分析 (1)通过过点O作OG⊥BC于G,利用OG=1、OF=$\frac{1}{sinθ}$、EF=1+$\frac{1}{sinθ}$、AE=θ及时间、路程与速度之间的关系即得结论;
(2)通过(1)求导可知T′(θ)=-$\frac{(2cosθ+3)(3cosθ-2)}{30vsi{n}^{2}θ}$,进而集合函数的单调性即得结论.

解答 解:(1)过点O作OG⊥BC于G,则OG=1,
OF=$\frac{OG}{sinθ}$=$\frac{1}{sinθ}$,EF=1+$\frac{1}{sinθ}$,AE=θ,
∴T(θ)=$\frac{AE}{5v}$+$\frac{EF}{6v}$=$\frac{θ}{5v}$+$\frac{1}{6vsinθ}$+$\frac{1}{6v}$,θ∈[$\frac{π}{4}$,$\frac{3π}{4}$];
(2)由(1)可知T′(θ)=$\frac{1}{5v}$-$\frac{cosθ}{6vsi{n}^{2}θ}$=$\frac{6si{n}^{2}θ-5cosθ}{30vsi{n}^{2}θ}$=-$\frac{(2cosθ+3)(3cosθ-2)}{30vsi{n}^{2}θ}$,
记cosθ0=$\frac{2}{3}$,由θ0∈[$\frac{π}{4}$,$\frac{3π}{4}$]可知:
当θ∈($\frac{π}{4}$,θ0)时T′(θ)<0,即T(θ)在区间($\frac{π}{4}$,θ0)上单调递减,
当θ∈(θ0,$\frac{3π}{4}$)时T′(θ)>0,即T(θ)在区间(θ0,$\frac{3π}{4}$)上单调递增,
∴当cosθ=$\frac{2}{3}$时时间T最短.

点评 本题考查根据实际问题选择函数类型,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设全集U={x|x≥2,x∈N}.集合A={x|x2≥5,x∈N},则∁UA={2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知两条直线l1:4x+3y+3=0,l2:8x+6y-9=0,则l1与l2的距离是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={x|x2-1≤0},N={x|-2<x<1,x∈Z},则M∩N(  )
A.{-1,0}B.{1}C.{-1,0,1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$(a>b>0)的左、右焦点分别为F1,F2,以F1为圆心,短半轴长为半径的圆与y轴相切,且与直线x-$\sqrt{3}$y-2=0相切.
(1)求椭圆的标准方程;
(2)已知点P($\sqrt{6}$,0),直线l与椭圆交于A、B两点,且满足$\overrightarrow{PA}$•$\overrightarrow{PB}$=-2,试问直线l是否恒过定点,若恒过定点,请给出证明,并求出该定点的坐标;若不过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.执行如图所示的伪代码,当输入a,b的值分别为1,3时,最后输出的a的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线y2=4px(p>0)的焦点为F,圆W:(x+p)2+y2=p2的圆心到过点F的直线l的距离为p.
(1)求直线l的斜率;
(2)若直线1与抛物线交于A.B两点.△WAB的面积为8.求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数g(x)=lnx-mx2-nx(m,n∈R)在x=2处取得最大值,则m的取值范围为(  )
A.(-$\frac{1}{8}$,0)∪(0,+∞)B.(-$\frac{1}{8}$,+∞)C.(-∞,0)∪(0,$\frac{1}{8}$)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数y=sin2($\frac{π}{12}$-x)+cos2($\frac{π}{12}$+x)的单调递增区间.

查看答案和解析>>

同步练习册答案