精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,侧面是等边三角形,且平面平面E的中点,.

1)求证:平面

2)求二面角的余弦值.

【答案】(1)证明见解析(2)

【解析】

1)取中点F,连结先证四边形为平行四边形,进而可得,进而可得平面

2)建立空间直角坐标系,求出平面和平面的法向量,利用两法向量所成角的余弦值可得二面角的余弦值.

1)如图,取中点F,连结.

因为E中点,,所以.

又因为,所以

所以四边形为平行四边形.

所以.

又因为平面平面

所以平面.

2)取中点O,连结.

因为为等边三角形,所以.

又因为平面平面,平面平面

所以平面.

因为

所以四边形为平行四边形.

因为,所以.

如图建立空间直角坐标系

.

所以

设平面的一个法向量为

,则

显然,平面的一个法向量为

,则

所以.

由题知,二面角为锐角,

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数fx)=|2x3|+|x+2|

1)求不等式fx≤5的解集;

2)若关于x的不等式fxa|x|在区间[12]上恒成立,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, ,沿翻折到的位置,使平面平面.

(1)求证: 平面

(2)若在线段上有一点满足,且二面角的大小为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过点(4,1),(0,1),(2,3),过点的直线与圆C交于MN两点.

1)若圆,判断圆C与圆的位置关系,并说明理由;

2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为2的正方体中,点是对角线上的点(点不重合),则下列结论正确的个数为(

①存在点,使得平面平面

②存在点,使得平面

③若的面积为,则

④若分别是在平面与平面的正投影的面积,则存在点,使得.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点在正方体的棱上(不含端点),给出下列五个命题:

①过点有且只有一条直线与直线,都是异面直线;

②过点有且只有一条直线与直线,都相交;

③过点有且只有一条直线与直线,都垂直;

④过点有无数个平面与直线,都相交;

⑤过点有无数个平面与直线,都平行;

其中真命题是____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为的椭圆的左顶点为A,且椭圆E经过与坐标轴不垂直的直线l与椭圆E交于CD两点,且直线AC和直线AD的斜率之积为.

I)求椭圆E的标准方程;

)求证:直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,曲线在点处的切线与直线平行,求的值;

2)若,且函数的值域为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)讨论的单调区间;

2)当时,证明:.

查看答案和解析>>

同步练习册答案