精英家教网 > 高中数学 > 题目详情

函数f(x)=log3(x2-2x-8)的单调减区间为


  1. A.
    (-∞,1)
  2. B.
    (-∞,-2)
  3. C.
    (4,+∞)
  4. D.
    (-∞,1]
B
分析:首先x2-2x-8在真数位置,故需大于0,复合函数单调区间满足“同增异减”原则,而y=log3u在(0,+∞)上是增函数,所以只需求u=x2-2x-8的单调递减区间即可.
解答:由f(x)=log3(x2-2x-8)可得x2-2x-8>0,
即得x>4或x<-2.
由y=log3u在(0,+∞)上为增函数,
u=x2-2x-8在(-∞,-2)上为减函数,
可得函数f(x)=log3(x2-2x-8)的单调减区间为(-∞,-2),
故应选B.
点评:题考查复合函数的单调区间和值域问题,复合函数单调区间满足“同增异减”原则,真数大于0在解题中不要忘掉.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、设函数f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,则f(x12)+f(x22)+…f(x102)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是减函数,则实数a的范围是(  )
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log 2(x2-x-2)
(1)求f(x)的定义域;
(2)当x∈[3,4]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设有三个命题:“①0<
1
2
<1.②函数f(x)=log 
1
2
x是减函数.③当0<a<1时,函数f(x)=logax是减函数”.当它们构成三段论时,其“小前提”是
(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•茂名二模)设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的高调函数.现给出下列命题:
①函数f(x)=log 
1
2
x为(0,+∞)上的高调函数;
②函数f(x)=sinx为R上的高调函数;
③如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的高调函数,那么实数m的取值范围是[2,+∞);
其中正确的命题的个数是(  )

查看答案和解析>>

同步练习册答案