精英家教网 > 高中数学 > 题目详情
(1)已知(a+a-12=3,求a3+a-3
(2)已知a2x=
2
+1,求
a3x+a-3x
ax+a-x

(3)已知x-3+1=a,求a2-2ax-3+x-6的值.
分析:(1)将a3+a-3化为(a1+a-1)(a2-1+a-2)求解
(2)将a3x+a-3x化为9ax+a-x)(a2x-1+a-2x)求解
(3)a2-2ax-3+x-6=(x-3-a)2=,整体代入.
解答:解:(1)由(a+a-12=a2+2+a-2=3,得a2+a-2=1,
所以a3+a-3=(a1+a-1)(a2-1+a-2)=0.
(2)
a3x+a-3x
ax+a-x
=
(ax+a-x)(a2x-1+a-2x)
ax+a-x
=a2x-1+a-2x
∵a2x=
2
+1,∴a2x-1+a-2x=
2
+1+
2
-1-1=2
2
+1,.
故原式=2
2
+1
(3)∵x-3+1=a,∴x-3-a=1,∴a2-2ax-3+x-6=(x-3-a)2=1.
点评:本题考查了因式分解的应用及完全平方公式,立方公式.解题的关键是熟悉因式分解的方法并正确的变形.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、已知集合A,B,全集∪,给出下列四个命题
(1)若A⊆B,则A∪B=B;
(2)若A∪B=B,则A∩B=B;
(3)若a∈(A∩CUB),则a∈A;
(4)若a∈CU(A∩B),则a∈(A∪B).
则上述正确命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知集合A={y|y=log2x,x≥1},B={y|y=(
12
x,x≥0},求A∩B,A∪B;
(2)已知A={x|a≤x≤a+3},B={x|x2+5x-6>0}.若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-2ax+4a2-3=0},集合B={x|x2-x-2=0},集合C={x|x2+2x-8=0}
(1)是否存在实数a,使A∩B=A∪B?若存在,试求a的值,若不存在,说明理由;
(2)若A∩B≠?,A∩C=∅,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间向量
a
=(a1,a2,a3),
b
=(b1,b2,b3),定义两个空间向量
a
b
之间的距离为d(
a
b
)=
3
i=1
|bi-ai|.
(1)若
a
=(1,2,3),
b
=(4,1,1),
c
=(
11
2
1
2
,0),证明:d(
a
b
)+d(
b
c
)=d(
a
c

(2)已知
c
=(c1,c2,c3
    ①证明:若?λ>0,使
b
-
a
=λ(
c
-
b
),则d(
a
b
)+d(
a
c
)=d(
a
c
).
    ②若d(
a
b
)+d(
b
c
)=d(
a
c
),是否一定?λ>0,使
b
-
a
=λ(
c
-
b
)?请说明理由.

查看答案和解析>>

同步练习册答案