精英家教网 > 高中数学 > 题目详情
9.10名工人某天生产同一零件,生产的件数茎叶图如图所示,若众数为c,则c=(  )
A.12B.14C.15D.17

分析 确定10个数据,即可求出众数.

解答 解:10个数据为:9,10,11,12,12,14,14,14,15,20,
∴众数为14,
故选:B.

点评 本题考查了众数的概念与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列有关命题的说法中错误的是(  )
A.“若x2+y2=0,则x,y全为0”的否命题是真命题
B.函数f(x)=ex+x-2的零点所在区间是(1,2)
C.命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1则x2-3x+2≠0”
D.对于命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设集合A={x|x2+2x-3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)设命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆$\frac{x^2}{9}+\frac{y^2}{5}=1$的左右焦点为F1、F2,点P为其上动点,点Q(3,2),则|PF1|-|PQ|的最大值为(  )
A.$6-\sqrt{5}$B.$\sqrt{29}-6$C.$6+\sqrt{5}$D.$\sqrt{29}-4$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ex-ax,a∈R.
(Ⅰ)若函数f(x)在x=0处的切线过点(1,0),求a的值;
(Ⅱ)若函数f(x)在(-1,+∞)上不存在零点,求a的取值范围;
(Ⅲ)若a=1,设函数$g(x)=\frac{1}{f(x)+ax}+\frac{4x}{{{e^x}-f(x)+4}}$,求证:当x≥0时,g(x)≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设x,y满足约束条件$\left\{\begin{array}{l}{x≥2}\\{3x-y≥1}\\{y≥x+1}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最小值为2,则$\frac{2}{a}+\frac{3}{b}$的最小值为$\frac{25}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在某样本的频率分布直方图中,共有7个小长方形,若第三个小长方形的面积为其他6个小长方形的面积和的$\frac{1}{4}$,且样本容量为100,则第三组数据的频数为(  )
A.25B.0.2C.0.25D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如果关于x的方程x2-2(1-m)x+m2=0有两实数根α,β,则α+β的取值范围为(  )
A.α+β≥$\frac{1}{2}$B.α+β≤$\frac{1}{2}$C.α+β≥1D.α+β≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设全集U是实数集R,M={x|2x≥4},N={x|1<x<3},则集合M∩N是(  )
A.{x|2<x<3}B.{x|2≤x<3}C.{x|1<x≤2}D.{x|x<2}

查看答案和解析>>

同步练习册答案