精英家教网 > 高中数学 > 题目详情
6.若直线2x+y-4=0,x+ky-3=0与两坐标轴围成的四边形有外接圆,则此四边形的面积为(  )
A.$\frac{11}{4}$B.$\frac{5\sqrt{5}}{4}$C.$\frac{41}{20}$D.5

分析 圆的内接四边形对角互补,而x轴与y轴垂直,所以直线2x+y-4=0与x+ky-3=0垂直,再利用两直线A1x+B1y+C1=0与A2x+B2y+C2=0垂直的充要条件A1A2+B1B2=0,列方程即可得k,即可得出结果

解答 解:圆的内接四边形对角互补,因为x轴与y轴垂直,所以2x+y-4=0与x+ky-3=0垂直
直线A1x+B1y+C1=0与直线A2x+B2y+C2=0垂直的充要条件是 A1A2+B1B2=0
由2×1+1×k=0,解得k=-2,
直线2x+y-4=0与坐标轴的交点为(2,0),(0,4),x+ky-3=0与坐标轴的交点为
(0,-$\frac{3}{2}$),(3,0),两直线的交点纵坐标为-$\frac{2}{5}$,
∴四边形的面积为$\frac{1}{2}×3×\frac{3}{2}-\frac{1}{2}×1×\frac{2}{5}$=$\frac{41}{20}$.
故选C

点评 本题考查了两直线垂直的充要条件,如果利用斜率还需要讨论斜率是否存在,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知复数z=m+2i,且(2+i)z是纯虚数,则实数m=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点为F,A,B分别为双曲线C左、右两支上的点,且四边形ABOF(O为坐标原点)为菱形,则双曲线C的离心率为(  )
A.$\sqrt{5}$B.2$\sqrt{3}$C.$\sqrt{3}$+1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,离心率为$\frac{1}{2}$,倾斜角为$\frac{π}{4}$的动直线l与椭圆E交于M,N两点,则当△FMN的周长的取得最大值8时,直线l的方程为(  )
A.x-y-1=0B.x-y=0C.x-y-$\sqrt{3}$=0D.x-y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等差数列{an}满足a2=2,点(a4,a6)在直线x+2y-16=0上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an+2${\;}^{{a}_{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(a>0,b>0)与抛物线$y=\frac{1}{8}{x^2}$有一个公共焦点F,双曲线上过点F且垂直于y轴的弦长为$\frac{{2\sqrt{3}}}{3}$,则双曲线的离心率为(  )
A.2B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{3\sqrt{2}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.己知3sin(π-α)+cos(2π-α)=0.
(1)求 $\frac{sinα+cosα}{2sinα-cosα}$
(2)求$\frac{{sin2α+{{cos}^2}α}}{2cos2α+sin2α+2}$
(3)求$tan(2α-\frac{π}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{1}{3}$,左焦点F到直线l:x=9的距离为10,圆G:(x-1)2+y2=1,
(1)求椭圆的方程;
(2)若P是椭圆上任意一点,EF为圆N:(x-1)2+y2=4的任一直径,求$\overrightarrow{PE}•\overrightarrow{PF}$的取值范围;
(3)是否存在以椭圆上点M为圆心的圆M,使得圆M上任意一点N作圆G的切线,切点为T,都满足$\frac{|NF|}{|NT|}=\sqrt{2}$?若存在,求出圆M的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四棱锥S-ABCD中,底面ABCD是边长为4的菱形,∠ABC=60°,SA⊥平面ABCD,且SA=4,M在棱SA上,且AM=1,N在棱SD上且SN=2ND.
(Ⅰ)求证:CN∥面BDM;
(Ⅱ)求直线SD与平面BDM所成的角的正弦值.

查看答案和解析>>

同步练习册答案