精英家教网 > 高中数学 > 题目详情

【题目】如图所示,正方体的棱长为1, 分别是棱 的中点,过直线的平面分别与棱 交于 ,设 ,给出以下命题:

①四边形为平行四边形;

②若四边形面积 ,则有最小值;

③若四棱锥的体积 ,则为常函数;

④若多面体的体积 ,则为单调函数.

⑤当时,四边形为正方形.

其中假命题的个数为( )

A. 0 B. 3 C. 2 D. 1

【答案】D

【解析】对①,因为平面平面,平面平面,平面平面,所以,同理,所以四边形为平行四边形,正确;

对②因为平面 ,所以平面 平面,所以,所以四边形面积,因为为定值,所以当分别为 的中点时有最小值,正确;

对③,因为为定值, 到平面的距离为定值,所以的体积为定值,即为常函数,正确;

对④,如图:过作平面平面,分别交 ,则多面体的体积,而,,,所以,常数,错;

对⑤,当时,四边形为正方形正确;

故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为,点为双曲线上一点,若的内切圆半径为1,且圆心到原点的距离为,则双曲线的离心率是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种新产品投放市场的100天中,前40天价格呈直线上升,而后60天其价格呈直线下降,现统计出其中4天的价格如下表:

时间

第4天

第32天

第60天

第90天

价格(千元)

23

30

22

7

(1)写出价格关于时间的函数关系式;(表示投放市场的第天);

(2)销售量与时间的函数关系:,则该产品投放市场第几天销售额最高?最高为多少千元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为平行四边形, .

(Ⅰ)证明: 平面

(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示, 是边长为的正三角形, 平面,且在平面的同侧,它们在内的正射影分别是,且 的距离为.

(1)求点到平面的距离;

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,直线是函数图象的一条对称轴.

(1)求的值,并求的解析式;

(2)若关于的方程在区间上有且只有一个实数解,求实数的取值范围;

(3)已知函数的图象是由图象上的所有点的横坐标伸长到原来的2倍,然后再向左平移个单位得到,若 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线过点,其倾斜角为,以原点为极点,以正半轴为极轴建立极坐标,并使得它与直角坐标系有相同的长度单位,圆的极坐标方程为.

(1)求直线的参数方程和圆的普通方程;

(2)设圆与直线交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 )的一系列对应最值如表:

(1)根据表格提供的数据求函数的解析式;

(2)求函数的单调递增区间和对称轴;

(3)若当时,方程恰有两个不同的解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上有最大值3和最小值.

(1)求实数的值;

(2)设,若不等式上恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案