精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα= ,则cos(α﹣β)=

【答案】﹣
【解析】解:方法一:∵角α与角β均以Ox为始边,它们的终边关于y轴对称,
∴sinα=sinβ= ,cosα=﹣cosβ,
∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣cos2α+sin2α=2sin2α﹣1= ﹣1=﹣
方法二:∵sinα=
当α在第一象限时,cosα=
∵α,β角的终边关于y轴对称,
∴β在第二象限时,sinβ=sinα= ,cosβ=﹣cosα=﹣
∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣ × + × =﹣
:∵sinα=
当α在第二象限时,cosα=﹣
∵α,β角的终边关于y轴对称,
∴β在第一象限时,sinβ=sinα= ,cosβ=﹣cosα=
∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣ × + × =﹣
综上所述cos(α﹣β)=﹣
所以答案是:﹣
【考点精析】掌握同角三角函数基本关系的运用和两角和与差的余弦公式是解答本题的根本,需要知道同角三角函数的基本关系:;(3) 倒数关系:;两角和与差的余弦公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,ABCD是边长为a的正方形,PA⊥平面ABCD.

(1)PA=AB,EPC的中点,求直线AE与平面PCD所成角的正弦值;

(2)BEPC且交点为E,BE=a,GCD的中点,线段AB上是否存在点F,使得EF∥平面PAG?若存在,AF的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划2011年在甲、乙两个电视台做总时间不超过300分钟的广告,广告费用不超过9万元.甲、乙电视台的广告收费标准分别为500/分钟和200/分钟.假定甲、乙两个电视台为该公司每分钟所做的广告,能给公司带来的收益分别为0.3 万元和0.2万元.问:该公司如何分配在甲、乙两个电视台的广告时间,才能使公司收益最大,最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图,在三棱锥中,分别是的中点,

(1) 求证:平面

(2) 求异面直线所成角的余弦值;

(3) 求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱ABC﹣A1B1C1中,所有棱长均为1,则点B1到平面ABC1的距离为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(13分)
(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;
(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);
(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}和{bn}是两个等差数列,记cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs这s个数中最大的数.(13分)
(1)若an=n,bn=2n﹣1,求c1 , c2 , c3的值,并证明{cn}是等差数列;
(2)证明:或者对任意正数M,存在正整数m,当n≥m时, >M;或者存在正整数m,使得cm , cm+1 , cm+2 , …是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于给定的正整数k,若数列{an}满足:an﹣k+an﹣k+1+…+an﹣1+an+1+…an+k﹣1+an+k=2kan对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”.
(Ⅰ)证明:等差数列{an}是“P(3)数列”;
(Ⅱ)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱锥的所有棱长都相等,的中点,则所成角的正弦值为(

A. B. C. D.

查看答案和解析>>

同步练习册答案