精英家教网 > 高中数学 > 题目详情
3.在△ABC,已知acosA=bcosB,则△ABC的形状是(  )
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等腰三角形或直角三角形

分析 根据正弦定理把等式acosA=bcosB的边换成角的正弦,再利用倍角公式化简整理得sin2A=sin2B,进而推断A=B,或A+B=90°答案可得.

解答 解:根据正弦定理可知∵acosA=bcosB,
∴sinAcosA=sinBcosB,
∴sin2A=sin2B,
∴A=B,或2A+2B=180°即A+B=90°,
所以△ABC为等腰或直角三角形.
故选:D.

点评 本题主要考查了正弦定理在解三角形中的应用,考查了转化思想和分类讨论思想的应用,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.执行如图所示的程序框图,若输出s的值为16,则输入n(n∈N)的最小值为(  )
A.11B.10C.9D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=\frac{1}{2}{x^2}-ax+(a-1)lnx$.
(1)当a=2,求函数f(x)的图象在点(1,f(1))处的切线方程;
(2)当a>2时,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若实数x,y满足$\left\{\begin{array}{l}x-y≤1\\ x≥0\\ y≤0\end{array}\right.$,则z=x+y的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的离心率为3,其渐近线与圆x2+y2-6y+m=0相切,则m=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=4x2+ax+2,不等式f(x)<c的解集为(-1,2).
(1)求a的值;
(2)解不等式$\frac{4x+m}{{f(x)-4{x^2}}}>0$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.将参数方程$\left\{\begin{array}{l}{x=\frac{1}{2}({e}^{t}+{e}^{-t})cosθ}\\{y=\frac{1}{2}({e}^{t}-{e}^{-t})sinθ}\end{array}\right.$(θ为参数,t为常数)化为普通方程(结果可保留e).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1  的离心率是 $\frac{2\sqrt{3}}{3}$,其一条准线方程为x=$\frac{3}{2}$.
(Ⅰ)求双曲线C的方程;
(Ⅱ)设双曲线C的左右焦点分别为A,B,点D为该双曲线右支上一点,直线AD与其左支交于点E,若$\overrightarrow{AE}$=λ$\overrightarrow{ED}$,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\frac{1}{2}$(sinx+cosx)-$\frac{1}{2}$|sinx-cosx|,则f(x)的值域是(  )
A.[-1,$\frac{\sqrt{2}}{2}$]B.[-1,1]C.[-$\frac{\sqrt{2}}{2}$,1]D.[-1,-$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

同步练习册答案