精英家教网 > 高中数学 > 题目详情

【题目】如图,拋物线的顶点在坐标原点,焦点在轴负半轴上,过点作直线与拋物线相交于两点,且满足.

1)求直线和拋物线的方程;

2)当拋物线上一动点从点运动到点时,求面积的最大值.

【答案】1)直线的方程为,抛物线方程为2

【解析】

(1)设直线的方程为,抛物线方程为,再联立方程利用韦达定理表达,继而求得直线的斜率与方程.

(2)根据当抛物线过点的切线与平行时,面积最大,利用导数的几何意义求解.或者设点,再表达出面积根据参数的范围分析面积表达式再求最值即可.

1)据题意可设直线的方程为,

抛物线方程为

,

得,.

设点,

,.

所以

因为,

所以,解得

故直线的方程为,抛物线方程为.

2)解法一:据题意,当抛物线过点的切线与平行时,面积最大

设点,因为,

,所以.

此时,点到直线的距离.

,得,.

所以

.

面积的最大值为.

解法二:由,得,.

所以

.

设点,点到直线的距离为,

,

时,,此时点.

面积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,讨论函数的单调性;

(2)当时,恒有,求实数的取值范围.

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国时期吴国数学家赵爽所注《周牌算经》中给出了勾股定理的绝妙证明.右面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实黄实,利用(股勾)朱实黄实弦实,化简,得勾,设勾股中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉颗数大约为( )(参考数据

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线过点(3,-2)且与椭圆4x2+9y2=36有相同的焦点.

(1)求双曲线的标准方程;

(2)若点M在双曲线上,F1,F2为左、右焦点,且|MF1|+|MF2|=6,试判别△MF1F2的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为原点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求曲线的普通方程和直线的直角坐标方程;

(2)设直线轴的交点为,过点作倾斜角为的直线与曲线交于两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为原点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求曲线的普通方程和直线的直角坐标方程;

(2)设直线轴的交点为,过点作倾斜角为的直线与曲线交于两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】黄河被称为我国的母亲河,它的得名据说来自于河水的颜色,黄河因携带大量泥沙所以河水呈现黄色, 黄河的水源来自青海高原,上游的1000公里的河水是非常清澈的.只是中游流经黄土高原,又有太多携带有大量泥沙的河流汇入才造成黄河的河水逐渐变得浑浊.在刘家峡水库附近,清澈的黄河和携带大量泥沙的洮河汇合,在两条河流的交汇处,水的颜色一清一浊,互不交融,泾渭分明,形成了一条奇特的水中分界线,设黄河和洮河在汛期的水流量均为2000,黄河水的含沙量为,洮河水的含沙量为,假设从交汇处开始沿岸设有若干个观测点,两股河水在流经相邻的观测点的过程中,其混合效果相当于两股河水在1秒内交换的水量,即从洮河流入黄河的水混合后,又从黄河流入的水到洮河再混合.

1)求经过第二个观测点时,两股河水的含沙量;

2)从第几个观测点开始,两股河水的含沙量之差小于?(不考虑泥沙沉淀)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是自然对数的底数,)存在唯一的零点,则实数的取值范围为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB是圆O的直径,点C是圆O上异于AB的动点,过动点C的直线VC垂直于圆O所在平面,DE分别是VAVC的中点.

1)判断直线DE与平面VBC的位置关系,并说明理由;

2)当△VAB为边长为的正三角形时,求四面体VDEB的体积.

查看答案和解析>>

同步练习册答案