精英家教网 > 高中数学 > 题目详情

【题目】已知坐标平面上的凸四边形 ABCD 满足 =(1, ), =(﹣ ,1),则凸四边形ABCD的面积为 的取值范围是

【答案】2;[﹣2,0)
【解析】解:∵凸四边形 ABCD 满足 =(1, ), =(﹣ ,1),

=0,且AC|=2,BD=2,

∴AC=BD,AC⊥BD,

∴凸四边形ABCD的面积为 = =2;

设AC与BD交点为O,OC=x,OD=y,则AO=2﹣x,BO=2﹣y; =( )( )=

=x(x﹣2)+y(y﹣2)=(x﹣1)2+(y﹣1)2﹣2,(0<x,y<2);

∴当x=y=1时, =﹣2为最小值,

当x→0或1,y→0或1时, 接近最大值0,

的取值范围是[﹣2,0).

故答案为:2;[﹣2,0).

根据向量的模的计算和向量的坐标运算得到四边形ABCD为对角线垂直且相等的四边形,问题得以解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD为矩形,PA⊥平面ABCD,点E是棱PD的中点,点F是PC的中点. (Ⅰ)证明:PB∥平面AEC;
(Ⅱ)若底面ABCD为正方形, ,求二面角C﹣AF﹣D大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数yf(x)在定义域[11]上既是奇函数,又是减函数.

(1)求证:对任意x1x2[11],有[f(x1)f(x2)]·(x1x2)0

(2)f(1a)f(1a2)0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD的中点.

1证明:PE⊥BC;

2若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 f(x)=asinx﹣bcosx(a,b为常数,a≠0,x∈R)在x= 处取得最小值,则函数g(x)=f( ﹣x)是(
A.偶函数且它的图象关于点(π,0)对称
B.奇函数且它的图象关于点(π,0)对称
C.奇函数且它的图象关于点( ,0)对称
D.偶函数且它的图象关于点( ,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点A(2,4),且被平行直线l1:x-y+1=0与l2:x-y-1=0所截的线段中点M在直线x+y-3=0上,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b,c为三个不同的实数,记集合A= ,B= ,若集合A,B中元素个数都只有一个,则b+c=(
A.1
B.0
C.﹣1
D.﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的可导函数f(x)满足f(x)﹣f(﹣x)=2x3 , 当x∈(﹣∞,0]时f'(x)<3x2 , 实数a满足f(1﹣a)﹣f(a)≥﹣2a3+3a2﹣3a+1,则a的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图(1)中的1,3,6,10,由于这些数能够表示成三角形,所以将其称为三角形数;类似地,称图(2)中的1,4,9,16这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )

A. 289 B. 1 024

C. 1 225 D. 1 378

查看答案和解析>>

同步练习册答案