精英家教网 > 高中数学 > 题目详情

【题目】探究函数的图象与性质.

1)下表是yx的几组对应值.

其中m的值为_______________

2)根据上表数据,在如图所示的平面直角坐标系中描点,并已画出了函数图象的一部分,请你画出该图象的另一部分;

3)结合函数的图象,写出该函数的一条性质:_________

4)若关于x的方程2个实数根,则t的取值范围是______.

【答案】13;(2)图象见解析;(3)图象关于直线x=1轴对称.(答案不唯一);(4t1t=0.

【解析】

1)把x=3代入解析式计算即可得出m的值;

2)画出图象即可;

3)根据图象得出性质;

4)观察图象即可得出结论.

解:(1)当x=3时,y==3,∴m=3

2)如图所示:

3)图象关于直线x=1轴对称.(答案不唯一)

4)观察图象可知:当t1t=0时,关于x的方程2个实数根.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数又有零点的是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ACBC,AC=BC=1,点P是△ABC内一点,则的取值范围是(  )

A. (﹣,0) B. (0, C. (﹣ D. (﹣1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数的图象与性质.列表:

x

0

1

2

3

y

1

2

1

0

1

2

描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.

1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;

2)研究函数并结合图象与表格,回答下列问题:

①点在函数图象上,      ;(填

②当函数值时,求自变量x的值;

③在直线的右侧的函数图象上有两个不同的点,且,求的值;

④若直线与函数图象有三个不同的交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“杨辉三角”是我国数学史上的一个伟大成就,是二项式系数在三角形中的一种几何排列.如图所示,去除所有为1的项,依此构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前56项和为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班数学兴趣小组对函数的图象和性质将进行了探究,探究过程如下,请补充完整.

1)自变量的取值范围是除外的全体实数,的几组对应值列表如下:

其中,_________

2)根据上表数据,在如图所示的平面直角坐标系中描点并画出了函数图象的一部分,请画出该函数图象的另一部分;

3)观察函数图象,写出一条函数性质;

4)进一步探究函数图象发现:

①函数图象与轴交点情况是________,所以对应方程的实数根的情况是________

②方程_______个实数根;

③关于的方程个实数根,的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求函数在点处的切线方程.

(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一容量为50的样本,数据的分组以及各组的频数如下:

[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5],4.

(1)列出样本的频率分布表.

(2)画出频率分布直方图.

(3)根据频率分布表,估计数据落在[15.5,24.5)内的可能性约是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了了解校园安全教育系列活动的成效,对全市高中生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化,现随机抽取部分高中生的答卷,统计结果如下,对应的频率分布直方图如图所示.

等级

不合格

合格

得分

[2040

[4060

[6080

[80100

频数

12

48

24

1)求的值;

2)估计该市高中生测试成绩评定等级为“合格”的概率;

3)在抽取的答卷中,用分层抽样的方法,从评定等级为“合格”和“不合格”的答卷中抽取5份,再从这5份答卷中任取2份,求恰有1份评定等级为“不合格”的概率

查看答案和解析>>

同步练习册答案