【题目】在直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C2的方程为(x-1)2+(y-1)2=2.
(1)在以O为极点,x轴的正半轴为极轴建立极坐标系,求曲线C1,C2的极坐标方程;
(2)直线θ=β(0<β<π)与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|的最大值.
【答案】(1)见解析(2)
【解析】
(1)直接利用转换关系式,把参数方程极坐标方程和直角坐标方程进行转化.
(2)利用极径对三角函数关系式进行恒等变换,利用正弦型函数的性质的应用求出结果.
(1)由曲线C1的参数方程为(α为参数),
转换为直角坐标方程为:x2+(y-2)2=4.①
将x=ρcosθ,y=ρsinθ代入①,
化简得:ρ=4sinθ,
即C1的极坐标方程为ρ=4sinθ;
将x=ρcosθ,y=ρsinθ代入C2的方程(x-1)2+(y-1)2=2,
得ρ=2cosθ+2sinθ,
化简得,
即C2的极坐标方程为;
(2)由极径的几何意义,
|AB|=|ρ1-ρ2|=|4sinβ-2cosβ-2sinβ|=,
当时,,
所以:|AB|的最大值为.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为,离心率为,是椭圆上的一个动点,且面积的最大值为.
(1)求椭圆的方程;
(2)设直线斜率为,且与椭圆的另一个交点为,是否存在点,使得若存在,求的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列{an}的前n项和为Sn,a2+a15=17,S10=55.数列{bn}满足an=log2bn.
(1)求数列{bn}的通项公式;
(2)若数列{an+bn}的前n项和Tn满足Tn=S32+18,求n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线与抛物线:交于,两点,且的面积为16(为坐标原点).
(1)求的方程.
(2)直线经过的焦点且不与轴垂直,与交于,两点,若线段的垂直平分线与轴交于点,试问在轴上是否存在点,使为定值?若存在,求该定值及的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=2BC=2,点M为DC的中点,将△ADM沿AM折起,使得平面△ADM⊥平面ABCM.
(1)求证:AD⊥BM;
(2)求点C到平面BDM的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场对职工开展了安全知识竞赛的活动,将竞赛成绩按照,,… ,分成组,得到下面频率分布直方图.根据频率分布直方图.下列说法正确的是( )
①根据频率分布直方图估计该商场的职工的安全知识竞赛的成绩的众数估计值为;
②根据频率分布直方图估计该商场的职工的安全知识竞赛的成绩的中位数约为;
③若该商场有名职工,考试成绩在分以下的被解雇,则解雇的职工有人;
④若该商场有名职工,商场规定只有安全知识竞赛超过分(包括分)的人员才能成为安全科成员,则安全科成员有人.
A.①③B.②③C.②④D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年3月2日,昌平 “回天”地区开展了种不同类型的 “三月雷锋月,回天有我”社会服务活动. 其中有种活动既在上午开展、又在下午开展, 种活动只在上午开展,种活动只在下午开展 . 小王参加了两种不同的活动,且分别安排在上、下午,那么不同安排方案的种数是___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小郭是一位热爱临睡前探究数学问题的同学,在学习向量三点共线定理时,我们知道当P、A、B三点共线,O为直线外一点,且时,x+y=1(如图1)第二天,小郭提出了如下三个问题,请同学帮助小郭解答.
(1)当x+y>1或x+y<1时,O、P两点的位置与AB所在直线之间存在什么关系?写出你的结论,并说明理由
(2)如图2,射线OM∥AB,点P在由射线OM、线段OA及BA的延长线围成的区域内(不含边界)运动,且,求实数x的取值范围,并求当时,实数y的取值范围.
(3)过O作AB的平行线,延长AO、BO,将平面分成如图3所示的六个区域,且,请分别写出点P在每个区域内运动(不含边界)时,实数x,y应满足的条件.(不必证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com