【题目】将函数y=sin(x+ )图象上的所有点纵坐标不变,横坐标变为原来的 倍,所得函数为f(x),则函数f(x)= .
科目:高中数学 来源: 题型:
【题目】已知直线l:2x+y﹣1=0与圆C:x2+y2=1相交于A,B两点.
(1)求△AOB的面积(O为坐标原点);
(2)设直线ax+by=1与圆C:x2+y2=1相交于M,N两点(其中a,b是实数),若OM⊥ON,试求点P(a,b)与点Q(0,1)距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 的部分图象如图所示.
(1)求函数的解析式,并求出的单调递增区间;
(2)将函数的图象上各个点的横坐标扩大到原来的2倍,再将图象向右平移个单位,得到的图象,若存在使得等式成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以M(﹣1,0)为圆心的圆与直线 相切.
(1)求圆M的方程;
(2)过点(0,3)的直线l被圆M截得的弦长为 ,求直线l的方程.
(3)已知A(﹣2,0),B(2,0),圆M内的动点P满足|PA||PB|=|PO|2 , 求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:(x﹣3)2+(y﹣4)2=4
(1)若平面上有两点A(1,0),B(﹣1,0),点P是圆C上的动点,求使|AP|2+|BP|2取得最小值时点P的坐标;
(2)若Q是x轴上的动点,QM,QN分别切圆C于M,N两点,①若 ,求直线QC的方程;②求证:直线MN恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知⊙O:x2+y2=2,⊙M:(x+2)2+(y+2)2=2,点P的坐标为(1,1).
(1)过点O作⊙M的切线,求该切线的方程;
(2)若点Q是⊙O上一点,过Q作⊙M的切线,切点分别为E,F,且∠EQF= ,求Q点的坐标;
(3)过点P作两条相异直线分别与⊙O相交于A,B,且直线PA与直线PB的倾斜角互补,试判断直线OP与AB是否平行?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为节约用水,计划在本市试行居民生活用水定额管理,为了较为合理地确定居民日常用水量的标准,通过抽样获得了100位居民某年的月均用水量(单位:吨),右表是100位居民月均用水量的频率分布表,根据右表解答下列问题:
分组 | 频数 | 频率 |
[0,1) | 10 | b |
[1,2) | 20 | 0.20 |
[2,3) | a | 0.30 |
[3,4) | 20 | 0.20 |
[4,5) | 10 | 0.10 |
[5,6] | 10 | 0.10 |
合计 | 100 | 1.00 |
(1)求表中a和b的值;
(2)请将频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com