精英家教网 > 高中数学 > 题目详情
11.log${\;}_{\sqrt{2}}$27×log${\;}_{\frac{1}{3}}$8=(  )
A.12B.18C.-18D.-$\frac{9}{2}$

分析 直接利用对数运算法则化简求解即可.

解答 解:log${\;}_{\sqrt{2}}$27×log${\;}_{\frac{1}{3}}$8=6log23×(-3log32)=-18.
故选:C.

点评 本题考查对数运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.直线y=2x与y=2x+1的位置关系是(  )
A.相交但不垂直B.平行C.垂直D.重合

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将函数f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)的图象向左平移$\frac{3}{2}$π个单位后与原来的图象重合,且f(x)≤f(π)恒成立,则ω的值(  )
A.等于$\frac{4}{3}$B.等于$\frac{3}{4}$C.等于$\frac{8}{3}$D.有很多种情况

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线y2=4x截直线y=x+b所得弦长为4,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$.若f(a)=2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知平面内点P(x,y)满足$\left\{\begin{array}{l}{2x+3y≤12}\\{2x+y≥4}\\{y≥0}\end{array}\right.$,O为坐标原点,则目标函数z=$\frac{2y+6}{3x+9}$的取值范围为[$\frac{2}{9}$,$\frac{14}{9}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在四边形ABCD中,$\overrightarrow{AB}$=(4,-2),$\overrightarrow{AC}$=(7,4),$\overrightarrow{AD}$=(3,6),则四边形ABCD的面积为30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=3sinωxcosωx+$\sqrt{3}$cos2ωx(ω>0)的最小正周期为$\frac{π}{2}$,将函数f(x)的图象向左平移$\frac{π}{6}$个单位后,得到的函数g(x)=(  )
A.$\sqrt{3}$cos4x+$\frac{\sqrt{3}}{2}$B.-$\sqrt{3}$cos4x+$\frac{\sqrt{3}}{2}$C.$\sqrt{3}$sin(4x+$\frac{5}{6}$π)+$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$sin(4x-$\frac{5}{6}$π)+$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2-x,g(x)=lnx.
(1)求函数y=f(x)-g(x)的极值;
(2)求函数y=f[xg(x)-2],x∈[1,e]的值域.

查看答案和解析>>

同步练习册答案