精英家教网 > 高中数学 > 题目详情

【题目】若二次函数的图象和直线无交点,现有下列结论:

①方程一定没有实数根;②若,则不等式对一切实数都成立;

③若,则必存在实数,使;④若,则不等式对一切实数都成立;⑤函数的图象与直线也一定没有交点,其中正确的结论是__________.(写出所有正确结论的编号)

【答案】①②④⑤

【解析】因为函数f(x)的图象与直线y=x没有交点,所以f(x)>x(a>0)或f(x)<x(a<0)恒成立.
因为f[f(x)]>f(x)>x或f[f(x)]<f(x)<x恒成立,所以f[f(x)]=x没有实数根;
正确;
若a>0,则不等式f[f(x)]>f(x)>x对一切实数x都成立;故正确;
若a<0,则不等式f[f(x)]<x对一切实数x都成立,所以不存在x0,使f[f(x0)]>x0
错误;
a+b+c=0,则f(1)=0<1,可得a<0,因此不等式f[f(x)]<x对一切实数x都成立;
正确;
易见函数g(x)=f(-x),与f(x)的图象关于y轴对称,所以g(x)和直线y=-x也一定没有交点.故正确;
故答案为:①②④⑤

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2|x|﹣3a
(1)当a=1时,在所给坐标系中,画出函数f(x)的图象,并求f(x)的单调递增区间
(2)若直线y=1与函数f(x)的图象有4个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2-6x+8<0},B={x|(xa)(x-3a)<0}.

(1)若xAxB的充分条件,求a的取值范围;

(2)若AB,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,有下列5个命题:

①若,则的图象自身关于直线轴对称;

的图象关于直线对称;

③函数的图象关于轴对称;

为奇函数,且图象关于直线对称,则周期为2;

为偶函数, 为奇函数,且,则周期为2.

其中正确命题的序号是____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数
(1)用定义证明:f(x)为R上的奇函数;
(2)用定义证明:f(x)在R上为减函数;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,若对于在定义域内存在实数满足,则称函数为“局部奇函数”.若函数是定义在上的“局部奇函数”,则实数的取值范围是(  )

A. [1﹣,1+ B. [﹣1,2] C. [﹣2,2] D. [﹣2,1﹣]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的方程的三个实根分别为一个椭圆,一个抛物线,一个双曲线的离心率,则的取值范围(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x3﹣12x在区间[﹣4,4]上的最小值是(
A.﹣9
B.﹣16
C.﹣12
D.﹣11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|x﹣2|.
(1)作出函数f(x)=x|x﹣2|的大致图象;
(2)若方程f(x)﹣k=0有三个解,求实数k的取值范围.
(3)若x∈(0,m](m>0),求函数y=f(x)的最大值.

查看答案和解析>>

同步练习册答案