【题目】已知函数.
(1)证明函数在定义域上单调递增;
(2)求函数的值域;
(3)令,讨论函数零点的个数.
【答案】(1)证明见解析;(2);(3)当时,没有零点;当时,有且仅有一个零点
【解析】
(1)求出函数定义域后直接用定义法即可证明;
(2)由题意得,对两边同时平方得,求出
的取值范围即可得解;
(3)转化条件得,令,利用二次函数的性质分类讨论即可得解.
(1)证明:令,解得,故函数的定义域为
令,
由,可得,所以,,
故即,所以函数在定义域上单调递增.
(2)由,,故,
,
当时,,有,可得:,故,
由,可得,故函数的值域为,
(3)由(2)知,
则,
令,则,
令,
①当时,,此时函数没有零点,故函数也没有零点;
②当时,二次函数的对称轴为,则函数在区间单调递增,而,,故函数有一个零点,又由函数单调递增,可得函数也只有一个零点;
③当时,,二次函数开口向下,对称轴,
又 ,,此时函数没有零点,故函数也没有零点.
综上,当时,函数没有零点;当时,函数有且仅有一个零点.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为中心,以坐标轴为对称轴的椭圆C经过点M(2,1),N(,-).
(1)求椭圆C的标准方程;
(2)经过点M作倾斜角互补的两条直线,分别与椭圆C相交于异于M点的A,B两点,求直线AB的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某专卖店为了对新产品进行合理定价,将该产品按不同的单价试销,调查统计如下表:
售价(元) | 4 | 5 | 6 | 7 | 8 |
周销量(件) | 90 | 85 | 83 | 79 | 73 |
(1)求周销量y(件)关于售价x(元)的线性回归方程;
(2)按(1)中的线性关系,已知该产品的成本为2元/件,为了确保周利润大于598元,则该店应该将产品的售价定为多少?
参考公式:,.
参考数据:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】首届中国国际进口博览会于2018年11月5日至10日在上海的国家会展中心举办.国家展、企业展、经贸论坛、高新产品汇集……首届进博会高点纷呈.一个更加开放和自信的中国,正用实际行动为世界构筑共同发展平台,展现推动全球贸易与合作的中国方案.
某跨国公司带来了高端智能家居产品参展,供购商洽谈采购,并决定大量投放中国市场.已知该产品年固定研发成本30万美元,每生产一台需另投入90美元.设该公司一年内生产该产品万台且全部售完,每万台的销售收入为万美元,
(1)写出年利润(万美元)关于年产量(万台)的函数解析式;(利润=销售收入-成本)
(2)当年产量为多少万台时,该公司获得的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小型企业甲产品生产的投入成本x(单位:万元)与产品销售收入y(单位:万元)存在较好的线性关系,下表记录了最近5次该产品的相关数据.
x(万元) | 3 | 5 | 7 | 9 | 11 |
y(万元) | 8 | 10 | 13 | 17 | 22 |
(1)求y关于x的线性回归方程;
(2)根据(1)中的回归方程,判断该企业甲产品投入成本12万元的毛利率更大还是投入成本15万元的毛利率更大(毛利率)?
相关公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有5人进入到一列有7节车厢的地铁中,分别求下列情况的概率用数字作最终答案:
恰好有5节车厢各有一人;
恰好有2节不相邻的空车厢;
恰好有3节车厢有人.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的个数是_________.
(1)命题“若,则方程有实数根”的逆否命题为“若方程无实数根,则”.
(2)命题“,”的否定“,”.
(3)若为假命题,则,均为假命题.
(4)“”是“直线:与直线:平行”的充要条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面四个命题中真命题的是( )
①在回归分析模型中,残差平方和越大,说明模型的拟合效果越好;
②两个随机变量相关性越强,则相关系数的绝对值越接近于1;
③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均增加0.4个单位;
④对分类变量与的随机变量的观测值来说,越小,“与有关系”的把握程度越大.
A.①④B.②④C.①③D.②③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com