【题目】下列各式:
(1)已知loga <1,则a> ;
(2)函数y=2x的图象与函数y=2﹣x的图象关于y轴对称;
(3)函数f(x)=lg(mx2+mx+1)的定义域是R,则m的取值范围是0≤m<4;
(4)函数y=ln(﹣x2+x)的递增区间为(﹣∞, ]
正确的有 . (把你认为正确的序号全部写上)
【答案】(2)(3)
【解析】解:(1)已知loga <1,当a>1时,恒成立,当0<a<1时,已知loga <logaa,可得a< ,故(1)错误;(2)y=2x与y= =2﹣x的图象关于y轴对称,故(2)正确;(3)∵函数f(x)=lg(mx2+mx+1)的定义域是R,
∴mx2+mx+1>0在R上恒成立,
①当m=0时,有1>0在R上恒成立,故符合条件;
②当m≠0时,由 ,解得0<m<4,综上,实数m的取值范围是0≤m<4,故(3)正确;(4)∵函数y=ln(﹣x2+x)的定义域为(0,1),
令z=﹣x2+x,则原函数可以写为y=lnz,
∵y=lnz为增函数,
∴原函数的增区间即是函数z=﹣x2+x,x∈(0,1)的增区间.
∴x∈(0, ].
∴函数y=ln(﹣x2+x)的递增区间为(0, ],故(4)错误.
∴正确的有:(2)(3).
所以答案是:(2)(3).
【考点精析】利用命题的真假判断与应用对题目进行判断即可得到答案,需要熟知两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
科目:高中数学 来源: 题型:
【题目】定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M≥0,都有|f(x)|≤M 成立,则称f(x)是D上的有界函数,其中M称为函f(x)的一个上界.已知函数f(x)=1+a+ , g(x)= .
(1)若函数g(x)为奇函数,求实数a的值;
(2)在(1)的条件下,求函数g(x),在区间[ , 3]上的所有上界构成的集合;
(3)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(1)当k=2时,求炮的射程;
(2)求炮的最大射程;
(3)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以其中它?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=AA1= , ∠ABC=60°.
(1)证明:AB⊥A1C;
(2)求二面角A﹣A1C﹣B的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一个“乱点鸳鸯谱”节目:每次邀请四对青年夫妻,先由每人随机抽签获得顺序展示才艺,再由观众通过投票的方式实施男女配对(观众不知道他们的真实配对情况).
(Ⅰ)求正确配对家庭数的期望;
(Ⅱ)设有对夫妻,记他们完全错位的配对种类总数为.
①求, , ;
②推导, , 所满足的关系式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校上学期的期中考试后,为了了解某学科的考试成绩,根据学生的考试成绩利用分层抽样抽取名学生的成绩进行统计(所有学生成绩均不低于分),得到学生成绩的频率分布直方图如图,回答下列问题;
(Ⅰ)根据频率分布直方图计算本次考试成绩的平均分;
(Ⅱ)已知本次全校考试成绩在内的人数为,试确定全校的总人数;
(Ⅲ)若本次考试抽查的人中考试成绩在内的有名女生,其余为男生,从中选择两名学生,求选择一名男生与一名女生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com