科目:高中数学 来源:2010年普通高等学校招生全国统一考试、文科数学(北京卷) 题型:044
已知集合Sn={X|X=(x1,x2,…,xn),x1∈{0,1},i={1,2,…,n}(n≥2)对于A=(a1,a2,…an),B=(b1,b2,…bn)∈Sn,定义A与B的差为A-B=(|a1-b1|,|a2-b2||,…|an-bn|);A与B之间的距离为d(A,B)=|a1-b1|
(Ⅰ)当n=5时,设A=(0,1,0,0,1),B=(1,1,1,0,0),求A-B,d(A,B);
(Ⅱ)证明:A,B,C∈Sn,有A-B∈Sn,且d(A-C,B-C)=d(A,B);
(Ⅲ)证明:A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数
查看答案和解析>>
科目:高中数学 来源:2010-2011学年湖北省、钟祥一中高三第二次联考数学理卷 题型:解答题
(14分)设函数f(x)=xn(n≥2,n∈N*)
(1)若Fn(x)=f(x-a)+f(b-x)(0<a<x<b),求Fn(x)的取值范围;
(2)若Fn(x)=f(x-b)-f(x-a),对任意n≥a (2≥a>b>0),
证明:F(n)≥n(a-b)(n-b)n-2。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年湖北省、钟祥一中高三第二次联考数学理卷 题型:解答题
(14分)设函数f(x)=xn(n≥2,n∈N*)
(1)若Fn(x)=f(x-a)+f(b-x)(0<a<x<b),求Fn(x)的取值范围;
(2)若Fn(x)=f(x-b)-f(x-a),对任意n≥a (2≥a>b>0),
证明:F(n)≥n(a-b)(n-b)n-2。
查看答案和解析>>
科目:高中数学 来源: 题型:
设函数f(x)=xn(n≥2,n∈N*)
(1)若Fn(x)=f(x-a)+f(b-x)(0<a<x<b),求Fn(x)的取值范围;
(2)若Fn(x)=f(x-b)-f(x-a),对任意n≥a (2≥a>b>0),
证明:F(n)≥n(a-b)(n-b)n-2。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com