精英家教网 > 高中数学 > 题目详情

如图,四棱锥S-ABCD的所有棱长均为1米,一只小虫从S点出发沿四棱锥爬行,若在每顶点处选择不同的棱都是等可能的.设小虫爬行n米后恰回到S点的概率为Pn(n≥2,n∈N).
(1)求P2,P3的值;
(2)求证:3Pn+1+Pn=1(n≥2,n∈N);
(3)求证:P2+P3+…+Pn数学公式(n≥2,n∈N).

解:(1)P2表示从S点到A(或B、C、D),然后再回到S点的概率,所以P2=4×=
因为从S点沿一棱爬行,不妨设为沿着SA棱再经过B或D,然后再回到S点的概率为×2=
所以P3=×4=
(2)证明:设小虫爬行n米后恰回到S点的概率为Pn
那么1-Pn表示爬行n米后恰好没回到S点的概率,
则此时小虫必在A(或B、C、D)点,所以×(1-Pn)=Pn+1,即3Pn+1+Pn=1(n≥2,n∈N).
(3)证明:由3Pn+1+Pn=1,得=-
从而Pn=+n-2(n≥2,n∈N).
所以P2+P3+…+Pn=+
=+
=+×+
分析:(1)利用分布计数原理求出小虫爬行2米所有的方法数,求出小虫爬2米后恰回到S点的方法数,利用古典概型概率公式求出概率,
(2)利用对立事件的概率公式求出Pn,Pn+1的递推关系,
(3)有(2)中Pn,Pn+1的递推关系构造新数列,利用等比数列的通项公式求出Pn的通项,通过分组利用等差数列、等比数列的前n项和公式求出和.
点评:本题考查古典概型概率公式、构造新数列求数列的通项公式的方法、等差数列的前n项和公式、等比数列的前n项和公式
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.
(Ⅰ)证明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥S-ABCD的底面是边长为3的正方形,SD丄底面ABCD,SB=3
3
,点E、G分别在AB,SG 上,且AE=
1
3
AB  CG=
1
3
SC.
(1)证明平面BG∥平面SDE;
(2)求面SAD与面SBC所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•醴陵市模拟)如图,四棱锥S-ABCD的底面是矩形,SA⊥底面ABCD,P为BC边的中点,AD=2,AB=1.SP与平面ABCD所成角为
π4
. 
(1)求证:平面SPD⊥平面SAP;
(2)求三棱锥S-APD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD底面ABCD是正方形,SA⊥底面ABCD,E是SC上一点,且SE=2EC,SA=6,AB=2.
(1)求证:平面EBD⊥平面SAC;
(2)求三棱锥E-BCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•西城区二模)如图,四棱锥S-ABCD中,平面SAC与底面ABCD垂直,侧棱SA、SB、SC与底面ABCD所成的角均为45°,AD∥BC,且AB=BC=2AD.
(1)求证:四边形ABCD是直角梯形;
(2)求异面直线SB与CD所成角的大小;
(3)求直线AC与平面SAB所成角的大小.

查看答案和解析>>

同步练习册答案