精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)满足:f(x)=f(x+2),当x∈[3,5]时,f(x)=2-|x-4|.下列四个不等关系中正确的是(  )
分析:由f(x)=f(x+2)可知f(x)是以2为周期的函数,依题意可求得3≤x<4时与4≤x≤5时f(x)的解析式,对A,B,C,D判断即可.
解答:解:∵x∈[3,5]时,f(x)=2-|x-4|,
∴当3≤x<4时,f(x)=x-2,
当4≤x≤5时f(x)=6-x,
又f(x)=f(x+2),
∴f(x)是以2为周期的周期函数;
当x∈[1,3]时,函数同x∈[3,5]时相同,
同理可得,1≤x<2时f(x)=(x+2)-2=x,即f(x)在[1,2)上单调递增;
当2≤x≤3时f(x)=6-(x+2)=4-x,
所以,当0≤x≤1时f(x)=6-(x+2)=2-x,即f(x)在[0,1]上单调递减;
∵cos
3
=-
1
2
,f(x)=f(x+2),
∴f(cos
3
)=f(-
1
2
)=f(
3
2
)=
3
2
,f(sin
3
)=f(
3
2
)=2-
3
2

显然,f(cos
3
)>f(sin
3
),故A错误;
对于B,0<cos1<sin1<1,f(x)在[0,1]上单调递减,
∴f(cos1)>f(sin1),故B错误;
同理可得,f(sin
π
6
)>f(cos
π
6
),故C错误;
对于D,f(cos2)=f(2+cos2)=2+cos2,f(sin2)=2-sin2,
f(cos2)-f(sin2)=2+cos2-2+sin2=sin2+cos2>0,
故D正确.
故选D.
点评:本题考查不等关系与不等式,考查分段函数的解析式的求法与三角函数的单调性的综合应用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案