【题目】如图,四边形ABCD是正方形,G是线段AD延长线一点,,平面ABCD,,,F是线段PG的中点;
求证:平面PAC;
若时,求平面PCF与平面PAG所成二面角的余弦值.
【答案】(1)见解析;(2)
【解析】
分别连接DB,DF,可得四边形BDFE为平行四边形,又面PAC,即可得平面PAC;
分别以直线AB,AG,AP为x轴,y轴,z轴建立空间直角坐标系,求得平面PCF的法向量,平面PAG的法向量为,即可得平面PCF与平面PAG所成二面角的余弦值.
证明:分别连接DB,DF,
,F分别是线段AG,PG的中点,
,,
又,,
四边形BDFE为平行四边形.
.
四边形ABCD时正方形,,
平面ABCD,,
,AC是面PAC内两两相交直线,
面PAC,平面PAC;
解:分别以直线AB,AG,AP为x轴,y轴,z轴建立空间直角坐标系,
,2,,2,,0,,,.
设平面PCF的法向量,由.
.
平面PAG的法向量为
.
平面PCF与平面PAG所成二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】高考改革后,学生除了语数外三门必选外,可在A类科目:物理、化学、生物和B类科目:政治、地理、历史共6个科目中任选3门.
(1)若小明同学已经确定选了物理,现在他还要从剩余的5科中再选2科,则他在历史与地理两科中至少选一科的概率?
(2)求小明同学选A类科目数X的分布列、数学期望和方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的准线与双曲线相交于、两点,双曲线的一条渐近线方程是,点是抛物线的焦点,且是等边三角形,则该双曲线的标准方程是( )
A.B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在边长为的菱形中,,现沿对角线把翻折到的位置得到四面体,如图所示.已知.
(1)求证:平面平面;
(2)若是线段上的点,且,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将杨辉三角中的奇数换成1,偶数换成0,便可以得到如图的“0-1三角”.在“三角”中,从第1行起,设第n次出现全行为1时,1的个数为,则等于( )
A.13B.14C.15D.16
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com