精英家教网 > 高中数学 > 题目详情
已知曲线上任意一点到两个定点的距离之和为4.
(1)求曲线的方程;
(2)设过(0,-2)的直线与曲线交于两点,且为原点),求直线的方程.
(1)
(2)直线的方程是. 

试题分析:(1)根据椭圆的定义,可知动点的轨迹为椭圆,
其中,则
所以动点的轨迹方程为.                     4分
(2)当直线的斜率不存在时,不满足题意.            
当直线的斜率存在时,设直线的方程为

,∴
,∴
.… ①             
由方程组  得
,代入①,得.                
,解得,.                    10分
所以,直线的方程是.         12分
点评:解决的关键是利用椭圆的定义来得到轨迹方程,这是求轨迹的首要考虑的方法之一,同时联立方程组,结合韦达定理来得到直线方程,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点坐标分别是,离心率,直线与椭圆交于不同的两点.
(1)求椭圆的方程;
(2)求弦的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆的右焦点的直线交椭圆于于两点,令,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点.
(1)求该椭圆的标准方程;
(2)设点,若是椭圆上的动点,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,且过点为其右焦点.
(1)求椭圆的方程;
(2)设过点的直线与椭圆相交于两点(点两点之间),若的面积相等,试求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)设椭圆与抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:












 
1)求的标准方程, 并分别求出它们的离心率
2)设直线与椭圆交于不同的两点,且(其中坐标原点),请问是否存在这样的直线过抛物线的焦点若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是椭圆的两个焦点,点在椭圆上,且,则△ 的面积为          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设点是曲线上的点,,则(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案