精英家教网 > 高中数学 > 题目详情
1.计算:$\frac{1}{1×4}+\frac{1}{4×7}+\frac{1}{7×10}+$…+$\frac{1}{2014×2017}$.

分析 通过裂项$\frac{1}{(3n-2)•(3n+1)}$=$\frac{1}{3}$($\frac{1}{3n-2}$-$\frac{1}{3n+1}$),并项相加、计算即得结论.

解答 解:∵$\frac{1}{(3n-2)•(3n+1)}$=$\frac{1}{3}$($\frac{1}{3n-2}$-$\frac{1}{3n+1}$),
∴$\frac{1}{1×4}+\frac{1}{4×7}+\frac{1}{7×10}+$…+$\frac{1}{2014×2017}$
=$\frac{1}{3}$(1-$\frac{1}{4}$+$\frac{1}{4}$-$\frac{1}{7}$+…+$\frac{1}{2014}$-$\frac{1}{2017}$)
=$\frac{1}{3}$(1-$\frac{1}{2017}$)
=$\frac{672}{2017}$.

点评 本题考查数列的求和,裂项、并项相加是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若定义在[1,16]上的函数f(x)=$\left\{\begin{array}{l}4-8\left|{x-\left.{\frac{3}{2}}\right|}\right.\;,\;1≤x≤2\\ \frac{1}{2}f(\frac{x}{2})\;\;\;\;\;,\;2<x≤16\end{array}$,则下列结论中错误的是(  )
A.函数f(x)的值域为[0,4]B.函数f(x)在[8,12]单调递增
C.关于x的方程2f(x)-1=0有6个根D.不等式xf(x)≤6恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.实数一元二次方程x2+ax+2b=0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,求(a-1)2+(b-2)2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知二次函数f(x)=x2-2tx+2t+1,x∈[-1,2]
(1)求函数f(x)的最小值g(t);
(2)若f(x)≥-1恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.数列{an}中,a1=2,a2=-1,${a}_{n}^{2}$=an+1•an-1(n≥2),则an=$(-1)^{n-1}•\frac{1}{{2}^{n-2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.方程组$\left\{\begin{array}{l}{3{x}^{2}+y=29}\\{x+y=5}\end{array}\right.$的两组解是$\left\{\begin{array}{l}{{x}_{1}=}&{{α}_{1}}\\{{y}_{1}=}&{{β}_{1}}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=}&{{α}_{2}}\\{{y}_{2}=}&{{β}_{2}}\end{array}\right.$,不解方程组求α1β22β1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.作出y=|x2+2x-8|的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知公比为q(q≠1)的等比数列{an}中,a1=-1,前3项和S3=-3.
(Ⅰ)求q;
(Ⅱ)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知实数a,b均大于零,且$\frac{1}{a}$+$\frac{2}{b}$=1,则a+b+$\sqrt{{a}^{2}+{b}^{2}}$的最小值为10.

查看答案和解析>>

同步练习册答案