分析 (1)u=x1x2≤($\frac{{x}_{1}+{x}_{2}}{2}$)2=$\frac{{k}^{2}}{4}$,由此能求出μ的取值范围.
(2)($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)=${x}_{1}{x}_{2}+\frac{1}{{x}_{1}{x}_{2}}$-$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{{x}_{1}{x}_{2}}$+2=$μ-\frac{{k}^{2}-1}{μ}+2$,由此能证明当k≥1时,不等式($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)≤($\frac{k}{2}-\frac{2}{k}$)2对任意(x1,x2)∈D恒成立.
(3)($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)-($\frac{k}{2}-\frac{2}{k}$)2=$\frac{({x}_{1}-{x}_{2})^{2}(4-{k}^{2}{x}_{1}{x}_{2}-4{k}^{2})}{4{k}^{2}{x}_{1}{x}_{2}}$,要使不等式($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)≥($\frac{k}{2}-\frac{2}{k}$)2恒成立,只需满足4-k2x1x2-4k2≥0恒成立,由此能求出k的范围.
解答 解:(1)∵集合D={(x1,x2)|x1>0,x2>0,x1+x2=k},其中k为正常数
∴u=x1x2≤($\frac{{x}_{1}+{x}_{2}}{2}$)2=$\frac{{k}^{2}}{4}$,当且仅当${x}_{1}={x}_{2}=\frac{k}{2}$时等号成立,
故μ的取值范围为(0,$\frac{{k}^{2}}{4}$].(2分)
(2)∵($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)=$\frac{1}{{x}_{1}{x}_{2}}+{x}_{1}{x}_{2}$-$\frac{{x}_{1}}{{x}_{2}}-\frac{{x}_{2}}{{x}_{1}}$
=${x}_{1}{x}_{2}+\frac{1}{{x}_{1}{x}_{2}}$-$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{{x}_{1}{x}_{2}}$=$μ-\frac{{k}^{2}-1}{μ}+2$.(4分)
由0<$μ≤\frac{{k}^{2}}{4}$,又k≥1,k2-1≥0,
∴由定义法可得($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)在(0,$\frac{{k}^{2}}{4}$]上是增函数,(6分)
∴($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)=$μ-\frac{{k}^{2}-1}{u}+2$≤$\frac{{k}^{2}}{4}-\frac{{k}^{2}-1}{\frac{{k}^{2}}{4}}$+2=$\frac{{k}^{2}}{4}-2+\frac{4}{{k}^{2}}$=($\frac{2}{k}-\frac{k}{2}$)2.
∴当k≥1时,不等式($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)≤($\frac{k}{2}-\frac{2}{k}$)2对任意(x1,x2)∈D恒成立.(7分)
(3)($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)-($\frac{k}{2}-\frac{2}{k}$)2
=$\frac{1}{{x}_{1}{x}_{2}}+{x}_{1}{x}_{2}$-$\frac{{x}_{1}}{{x}_{2}}-\frac{{x}_{2}}{{x}_{1}}-\frac{4}{{{k}^{2}}_{\;}}-\frac{{k}^{2}}{4}+2$
=($\frac{1}{{x}_{1}{x}_{2}}-\frac{4}{{k}^{2}}$)-($\frac{{k}^{2}}{4}-{x}_{1}{x}_{2}$)-($\frac{{x}_{1}}{{x}_{2}}+\frac{{x}_{2}}{{x}_{1}}-2$)
=$\frac{{k}^{2}-4{x}_{1}{x}_{2}}{{k}^{2}{x}_{1}{x}_{2}}$-$\frac{{k}^{2}-4{x}_{1}{x}_{2}}{4}$-$\frac{({x}_{1}-{x}_{2})^{2}}{{x}_{1}{x}_{2}}$,
∵x1+x2=k,∴${k}^{2}-4{x}_{1}{x}_{2}=({x}_{1}-{x}_{2})^{2}$,
∴($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)-($\frac{k}{2}-\frac{2}{k}$)2
=$\frac{({x}_{1}-{x}_{2})^{2}}{{k}^{2}{x}_{1}{x}_{2}}$-$\frac{({x}_{1}-{x}_{2})^{2}}{4}$-$\frac{({x}_{1}-{x}_{2})^{2}}{{x}_{1}{x}_{2}}$
=$\frac{({x}_{1}-{x}_{2})^{2}(4-{k}^{2}{x}_{1}{x}_{2}-4{k}^{2})}{4{k}^{2}{x}_{1}{x}_{2}}$,(10分)
要使不等式($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)≥($\frac{k}{2}-\frac{2}{k}$)2恒成立,
只需满足4-k2x1x2-4k2≥0恒成立,
即x1x2≤$\frac{4-4{k}^{2}}{{k}^{2}}$恒成立,由(1)知0<${x}_{1}{x}_{2}≤\frac{{k}^{2}}{4}$,
所以$\frac{{k}^{2}}{4}≤\frac{4-4{k}^{2}}{{k}^{2}}$,即k4+16k2-16≤0,
解得0<k≤2$\sqrt{\sqrt{5}-2}$,
∴使不等式($\frac{1}{{x}_{1}}$-x1)($\frac{1}{{x}_{2}}$-x2)≥($\frac{k}{2}-\frac{2}{k}$)2对任意(x1,x2)∈D恒成立的k的范围是(0,2$\sqrt{\sqrt{5}-2}$].(12分)
点评 本题考查实数的取值范围的求法,考查不等式的证明,综合性强,难度大,对数学思维能力要求较高,解题时要认真审题,注意等价转化思想的合理运用.
科目:高中数学 来源: 题型:选择题
A. | (-2,3] | B. | [-2,3] | C. | [-2,2] | D. | (-∞,-2]∪[3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | -3 | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 24-π | B. | 24-$\frac{π}{3}$ | C. | 24-$\frac{3π}{2}$ | D. | 24-$\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{x}^{2}}{15}$+$\frac{{y}^{2}}{14}$=1 | B. | $\frac{{x}^{2}}{17}$+$\frac{{y}^{2}}{16}$=1 | C. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{15}$=1 | D. | $\frac{{x}^{2}}{14}$+$\frac{{y}^{2}}{13}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com