精英家教网 > 高中数学 > 题目详情

, 已知函数 
(Ⅰ) 证明在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增;
(Ⅱ) 设曲线在点处的切线相互平行, 且 证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分15分)已知函数
(1)当时,求最小值;
(2)若存在单调递减区间,求的取值范围;
(3)求证:).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数().
(Ⅰ)当时,求函数的极值;   
(Ⅱ)若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若x=1时取得极值,求实数的值;
(2)当时,求上的最小值;
(3)若对任意,直线都不是曲线的切线,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像都过点,且它们在点处有公共切线.
(1)求函数的表达式及在点处的公切线方程;
(2)设,其中,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 函数
(1)已知任意三次函数的图像为中心对称图形,若本题中的函数图像以为对称中心,求实数的值
(2)若,求函数在闭区间上的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知函数f(x)=Asin(ωx+φ)(A>0,|φ|<)图像上一个最高点坐标为(2,2),这个最高点到相邻最低点的图像与x轴交于点(5,0).

(1)求f(x)的解析式;
(2)是否存在正整数m,使得将函数f(x)的图像向右平移m个单位后得到一个偶函数的图像?若存在,求m的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在点处取得极小值-4,使其导数的取值范围为,求:
(1)的解析式;
(2),求的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)判断奇偶性, 并求出函数的单调区间;
(2)若函数有零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案