【题目】 在平行四边形ABCD中,A(1,1),=(6,0),点M是线段AB的中点,线段CM与BD交于点P.(1) 若=(3,5),求点C的坐标;(2) 当||=||时,求点P的轨迹.
科目:高中数学 来源: 题型:
【题目】设抛物线的顶点在坐标原点,焦点在轴正半轴上,过点的直线交抛物线于两点,线段的长是, 的中点到轴的距离是.
(1)求抛物线的标准方程;
(2)过点作斜率为的直线与抛物线交于两点,直线交抛物线于,
①求证: 轴为的角平分线;
②若交抛物线于,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:
x | 30 | 40 | 45 | 50 |
y | 60 | 30 | 15 | 0 |
在所给的坐标图纸中,根据表中提供的数据,描出实数对(x,y)的对应点,并确定y与x的一个函数关系式;
(2)设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,点A的极坐标为(3, ),点B的极坐标为(6, ),曲线C:(x﹣1)2+y2=1
(1)求曲线C和直线AB的极坐标方程;
(2)过点O的射线l交曲线C于M点,交直线AB于N点,若|OM||ON|=2,求射线l所在直线的直角坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知矩形的长为2,宽为1,.边分别在轴.轴的正半轴上,点与坐标原点重合(如图所示)。将矩形折叠,使点落在线段上。
(1)若折痕所在直线的斜率为,试求折痕所在直线的方程;
(2)当时,求折痕长的最大值;
(3)当时,折痕为线段,设,试求的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位: ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.
(1)假设生产状态正常,记表示一天内抽取的16个零件中其尺寸在之外的零件数,求及的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
经计算得,其中为
抽取的第个零件的尺寸, .
用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01).
附:若随机变量服从正态分布,则, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABCA1B1C1中,D是BC的中点.
(1)求证:A1B∥平面ADC1;
(2)若AB⊥AC,AB=AC=1,AA1=2,求几何体ABD-A1B1C1的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com