精英家教网 > 高中数学 > 题目详情
10.某工厂打算建造如图所示的圆柱形容器(不计厚度,长度单位:米),按照设计要求,该容器的底面半径为r,高为h,体积为16π立方米,且h≥2r.已知圆柱的侧面部分每平方米建造费用为3千元,圆柱的上、下底面部分每平方米建造费用为a千元,假设该容器的建造费用仅与其表面积有关,该容器的建造总费用为y千元.
(1)求y关于r的函数表达式,并求出函数的定义域;
(2)问r为多少时,该容器建造总费用最小?

分析 (1)设容器的容积为V,利用体积公式化简求解即可.
(2)求出函数的导数$y'=4πar-\frac{96π}{r^2}({0<r≤2})$,求出极值点利用函数的单调性求解最值即可.

解答 解:(1)设容器的容积为V,
由题意知V=πr2h=16π,故$h=\frac{16}{r^2}$,…..(2分)
因为h≥2r,所以0<r≤2,….(4分)
故建造费用$y=2πrh×3+2π{r^2}a=6πr×\frac{16}{r^2}+2π{r^2}a$,
即$y=2πa{r^2}+\frac{96π}{r},0<r≤2$.….(6分)
(2)由(1)得$y'=4πar-\frac{96π}{r^2}({0<r≤2})$,
令y'=0得$r=2\root{3}{{\frac{3}{a}}}$,…..(8分)
①当$0<2\root{3}{{\frac{3}{a}}}<2$即a>3时,
若$r∈({0,2\root{3}{{\frac{3}{a}}}})$,则y'<0,函数单调递减;
若$r∈({2\root{3}{{\frac{3}{a}}},2})$,则y'>0,函数单调递增;
所以$r=2\root{3}{{\frac{3}{a}}}$时,函数取得极小值,也是最小值.…(12分)
②当$2\root{3}{{\frac{3}{a}}}≥2$即0<a≤3时,
因为r∈(0,2],则y'<0,函数单调递减;
则r=2时,函数取得最小值.…(14分)
综上所述:若a>3,当$r=2\root{3}{{\frac{3}{a}}}$时,建造总费用最少;
若0<a≤3,当r=2时,建造总费用最少.…..(16分)

点评 本题考查实际问题的应用,函数的解析式的求法,导数的应用,函数的最值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.如图所示,在平行四边形ABCD中,AB=4,AD=3,E是边CD的中点,$\overrightarrow{DF}$=$\frac{1}{3}$$\overrightarrow{DA}$,若$\overrightarrow{AE}$•$\overrightarrow{BF}$=-4,则sin∠BAD=$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.$tan(-\frac{7π}{6})$=-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=0,|$\overrightarrow{a}$|=1.|$\overrightarrow{b}$|=2,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数$f(x)=\frac{1}{3}{x^3}-{x^2}-3x-a$有三个不同的零点,则实数a的取值范围是$(-9,\frac{5}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=ax2+bx+c(a>b>c)的图象经过点A(m1,f(m1))和点B(m2,f(m2)),f(1)=0,若a2+(f(m1)+f(m2)•a+f(m1)•f(m2)=0,则(  )
A.b≥0B.b<0C.3a+c≤0D.3a-c<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.“健步走”是一种方便而又有效的锻炼方式,李老师每天坚持“健步走”,并用计步器进行统计.他最近8天“健步走”步数的条形统计图及相应的消耗能量数据表如表:
步数(千卡)16171819
消耗能量(卡路里)400440480520
(1)求李老师这8天“健步走”步数的平均数;
(2)从步数为16千步,17千步,18千步的6天中任选2天,设李老师这2天通过“健步走”消耗的能量和为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2.
(I)求异面直线AC与B1D所成角的余弦值;
(Ⅱ)设M是线段B1D上一点,在长方体ABCD-A1B1C1D1内随机选取一点,若该点取自于三棱锥M-ACD内的概率为$\frac{1}{18}$,试确定点M的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数$f(x)=1+\sqrt{x}$,$g(x)=\sqrt{1-x}-\sqrt{x}$,则f(x)+g(x)=1+$\sqrt{1-x}$,0≤x≤1.

查看答案和解析>>

同步练习册答案