A. | $y=3sin({2x-\frac{π}{6}})$ | B. | $y=3sin({2x-\frac{π}{3}})$ | C. | $y=3sin({x-\frac{π}{6}})$ | D. | $y=3sin({x-\frac{π}{3}})$ |
分析 根据三角函数的图象与性质求出周期T、以及ω、φ的值即可.
解答 解:由函数$y=Asin({ωx+φ})({A>0,ω>0,|φ|<\frac{π}{2}})$的部分图象知,
$\frac{T}{4}=\frac{2π}{3}-\frac{π}{6}=\frac{π}{2}$,
∴T=2π,
∴$ω=\frac{2π}{T}$=1,
又$({\frac{π}{6},0})$为“五点法”的第一个点,
则$\frac{π}{6}+φ=0$,
解得$φ=-\frac{π}{6}$,
∴y=3sin(x-$\frac{π}{6}$).
故选:C.
点评 本题考查了直线型函数的图象与性质的应用问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 内切 | B. | 相交 | C. | 外切 | D. | 相离 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{8}$ | B. | $\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{8}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com